
ON THE EQUATIONAL THEORY OF FINITE
MODULAR LATTICES
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Abstract. It is shown that there is N such that there is no al-
gorithm to decide for identities in at most N variables validity in
the class of finite modular lattices.

1. Introduction

Since Dedekind’s early result on modular lattices with 3 generators,
calculations in modular lattices have served to reveal structure, also in
geometric or algebraic context, to mention work e.g. of von Neumann
and Thrall. Though, as shown by Hutchinson [13] and Lipshitz [19],
the Restricted Word Problem for modular lattices is unsolvable (5 gen-
erators suffice) and so is the Triviality Problem. These results remain
valid for any class of modular lattices containing the subspace lattices
of some infinite dimensional vector space. Applying von Neumann’s
coordinate rings associated with frames in modular lattices, the proof
relies on interpreting a finitely presented group with unsolvable word
problem cf. Section 8, below.

On the other hand, for many rings R, including all division rings
and homomorphic images of Z, the equational theory of the class of
all submodules L(RM) is decidable [9]; a thorough analysis has been
given by Gábor Czédli and George Hutchinson [14].

Again based on frames and the fact, shown by András Huhn [12],
that frames freely generate projective modular lattices, Ralph Freese
[6] proved unsolvability of the Word Problem for the modular lattice
FM(5) with 5 free generators. On the model side, he relied on results
of Cohn and McIntyre capturing group presentations within skew fields
and on a construction, due to Dilworth and Hall, obtaining a modu-
lar lattice matching an upper section of one with a lower section of
the other - here applied to height 2 intervals in subspace lattices of
4-dimensional vector spaces. On the syntactic side, this structure is
reflected in a sublattice of FM(5), by a method to be called Freese’s
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technique: To frames (as part of presentations) with additional re-
lations from given ones by “reduction” (mimicking subquotients of a
module), to obtain a sublattice with enough structure, and to continue
with elements (built from integers in a coordinate ring) having a prop-
erty (called “stability” in [10]) which is inherited under reduction and
allows to force group relations. Actually, Freese’s proof associates a
projective modular lattice with any finitely presented group and his
result remains valid for all varieties of modular lattices containing all
infinite modular lattices of height 6.

The case of the free modular lattice with 4 generators has been done
in [10] interpreting finitely presented 2-generator groups G via a con-
cept of “skew-frames of characteristic p × p”, providing 2 stable ele-
ments. Here, models are obtained by a glueing construction involving
a lattice ordered system of components given as lattices of submodules
of free (Z/pZ)G-modules.

The result crucial for the present note is the following.

Theorem 1.1. Slobodskoi [20]. The Restricted Word Problem for
the class of finite groups is unsolvable. That is, there is a list ḡ =
(g1, . . . , gn) of generator symbols and a finite set of relations ρi(ḡ) in
the language of groups such that there is no algorithm to decide, for
any words w(ḡ), whether w(ā) = e for all finite groups G and all ā in
G satisfying the relations ρi(ā) for all i.

Kharlampovich [15] proved the analogue for finite nilpotent groups,
even more restricted classes of finite groups have been dealt with in [17].
A concise review of Slobodkoi’s result has been given in [2, Section 2].
For a detailed analysis see [16, Section 7.4].

A rather immediate consequence of Thm. 1.1 is that the Restricted
Word Problem is unsolvable for any class of finite modular lattices
containing all subspace lattices of finite vector spaces cf Section 8. The
same applies to the Triviality Problem [11], based on the unsolvability
for the class of finite groups, proved by Bridson and Wilton [2].

Theorem 1.2. With n from Slobodkoi’s result, the set of identities in
n+ 6 variables, valid in all finite modular lattices, is non-recursive.

Thm 1.2 adapts to all classes of finite modular lattices containing
the particular ones constructed in Thm. 6.3 from groups in a class
with unsolvable restricted word problem.

In a recent related result, Kühne and Yashfe [18] show that there
is no algorithm to decide, for any finite geometric lattice L with di-
mension function δ, whether there is a join embedding ε of L into the
subspace lattice of some vector space (over fields from any specified
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class) such that, for some constant c, dim ε(x) = c · δ(x) for all x ∈ L.

Concerning the proof of Thm. 1.2, on the model side, the construc-
tion of [10] is extended combining n skew frames (into a “tower”) to
deal with n group generators (Section 6). On the formal side, for con-
venience, we first capture towers by presentations projective within
modular lattices (Section 3). Reductions of towers and stable elements
are discussed in Section 4, coordinates and Freese’s method of forcing
group relations in Section 5. Finally, in Section 7 reduction is used to
turn each skew frame of a tower, one at a time, into one of characteristic
p× p and to obtain the associated stable element. Stable elements as-
sociated with other skew frames will be transformed (thanks to Ralph
Freese) into stable elements, again, and it does not matter that char-
acteristic p × p is (supposedly) lost. For easy reference, a description
of the (well known) general method is given in Section 2.

2. Presentations and reduction to identities

2.1. Presentations. Given a similarity type of algebraic structures,
we fix a variety T with solvable word problem for free algebras FT (x̄)
in free generators x̄ = (x1, . . . , xn), called variables. Elements t(x̄) will
be called terms. For binary operator symbols, say +, we write s+ t̄ to
denote the list (s+ t1, . . . , s+ tn).

Due to the solvability of the word problem there is an algorithm to
decide, for any terms t(x̄), s(x̄) in the absolutely free algebra, whether
the identity t(x̄) = s(x̄) is valid in T , i.e. whether the terms denote
the same element of FT (x̄). This applies also to expansions by new
constants.

To simplify notation, a list (t1(x̄), . . . , tn(x̄)) is also written as t̄(x̄)
and t̄(x̄)|m stands for (t1(x̄), . . . tm(x̄)) where m ≤ n. Also, we write
t̄(ū(ȳ)) = t̄(u1(ȳ), , . . . , un(ȳ)) and the like.

Given a list c̄ of (pairwise distinct) new constants, called generator
symbols, a relation ρ(c̄) is an expression t(c̄) = s(c̄) where t(x̄) and
s(x̄) are terms. A (finite) presentation Π (also written as (Π, c̄)) is then
given by c̄ and a finite set of relations ρ(c̄). Constant (i.e. variable free)
terms in the language expanded by c̄ are also referred to as “terms over
Π”.

A relation ρ(c̄), as above, is satisfied by ā = (a1, . . . , an) in A ∈ T
if t(ā) = s(ā), we write A |= ρ(ā). (A, ā) is a model of Π, written as
A |= Π, if all relations of Π are satisfied in A. Par abuse de language
we also say that ā is a Π in A and we use c̄ to denote ā.
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In the sequel, let A ⊆ T denote a class of algebraic structures closed
under subalgebras. We say that (A, ā) is in A if A ∈ A. A relation
ρ(c̄) is a consequence of Π in A, also implied by Π in A, if A |= ρ(ā)
for all models (A, ā) of Π in A. The Restricted Word Problem for A is
unsolvable if there is a presentation (Π, c̄) such there is no algorithm
to decide, for any relation ρ(c̄), whether ρ(c̄) is a consequence of (Π, c̄)
within A.

2.2. Transformations and strengthening. A transformation within
A of Π to a presentation Ψ in generator symbols d̄ = (d1, . . . , dm)
is given by a list of terms uj(x̄), j = 1, . . . ,m, such that one has
(A, (u1(ā), . . . , um(ā)) a model of Ψ for each model (A, ā) of Π in A.
The composition with a further transformation Ψ to Φ, given by the
vk(ȳ), is the transformation obtained by the terms vk(u1(x̄), . . . , um(x̄)).
Thus, one obtains transformations by iterated composition. The pre-
sentations Π and Ψ are equivalent within A if, in the above, one has
Φ = Π and A |= v̄(ū(ā)) = ā, and B |= ū(v̄(b̄)) = b̄ for all models (A, ā)
of Π and (B, b̄) of Ψ. In particular, if Ψ is obtained from Φ adding gen-
erators (that is, m > n and ci = di for i ≤ n) and relations then Π and
Ψ are equivalent within A if and only if there is a transformation of Φ
to Ψ within A such that uj = xj for j ≤ n.

Consider presentations Π and Π+ in the same generator symbols c̄ =
(c1, . . . , cn). A transformation from Π to Π+ within A given by terms
ui(x̄), i = 1, . . . , n (also written as uci(x̄) with xi = xci) strengthens Π
to Π+ within A if the following hold.

(1) The relations of Π are consequences of Π+ within A.
(2) ui(ā) = ai for i = 1, . . . , n and all models (A, ā) of Π+ in A.

That is, from any model (A, ā) of Π in A one obtains the model
(A, ū(ā)) of Π+ while models of Π+ remain unchanged.

Considering a model (A, ā) of Π, it is common use to write also ci
in place of ai, that is, the generator symbol ci denotes the element ai
of A. In view of this, we use the notation ci := ui(c̄) to indicate the
terms ui(x̄) defining the strengthening of Π to Π+ - without mentioning
ci := ci if ui(x̄) = xi. In particular this is done if we construct a
sequence of strengthenings - which, of course, provides a strengthening
of the original presentation.

2.3. Projective presentations. A presentation Π is projective within
A if there are (witnessing) terms tΠ1 (x̄), . . . , tΠn (x̄) such that the follow-
ing hold for all A ∈ A and ā in A.

(1) (A, (tΠ1 (ā), . . . , tΠn (ā)) |= Π.
(2) If (A, ā) |= Π then tΠi (ā) = ai for all i.
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Then, of course, Π is projective within any B ⊆ A.

Fact 2.1. If Π1 and Π2 are projective within A then so is their disjoint
union, e.g. if Π2 introduces additional generators, but no relations.

Fact 2.2. If Π is strengthened to Π+ within A then Π+ is projective
in A if so is Π.

Fact 2.3. If Π is projective in A, with witnessing terms tΠi (x̄), then
the identity

t(tΠ1 (x̄), . . . , tΠn (x̄)) = s(tΠ1 (x̄), . . . , tΠn (x̄))

is valid in A if and only if t(ā) = s(ā) for all models (A, ā) of Π in A.

Now, assume that A is a variety, i.e. an equationally definable class.
Then for each presentation (Π, c̄) one has “the” algebra FA(Π, c̄) in
A freely generated by c̄ under the relations Π; here, c̄ also denotes its
image under the canonical homomorphism. This algebra is projective
within A if and only if so is the presentation (Π, c̄).

Strengthening the presentation (Π, c̄) to Π+ with additional relation
s(c̄) = t(c̄) then means to provide b̄ in FA(Π, c̄) such that s(b̄) = t(b̄)
and φ(b̄) = φ(c̄) for all A ∈ A and homomorphisms φ : FA(Π, c̄)→ A
such that s(φ(c̄)) = t(φ(c̄)).

2.4. Reducing quasi-identities to identities. Given a signature,
an identity or equation is a sentence of the form ∀x̄. t(x̄) = s(x̄), a
quasi-identity a sentence of the form ∀ȳ. α(ȳ) ⇒ t(ȳ) = s(ȳ) with
antecedent α(ȳ) ≡

∧
i ti(ȳ) = si(ȳ); here t(x̄), s(x̄), ti(ȳ), and si(ȳ) are

terms. Observe that, replacing variables by new constants, α is turned
into a presentation.

Consider classesM0 and G0 of algebraic structures in (not necessar-
ily) distinct signature, both closed under subalgebras. The task is to
reduce quasi-identities for G0 to equations for M0; that is, given a set
Λ of quasi-identities in the language of G0 to construct an algorithm
associating with each β ∈ Λ an equation β∗ in the language ofM0 such
that β holds in G0 if and only if β∗ holds in M0.

In the sequel we describe the general structure of such algorithm
to be applied to the case where G0 is the class of all finite groups,
M0 the class of all finite modular lattices. Fix a set Λ0 of formulas
α(ȳ) ≡

∧h
i=1wi(ȳ) = vi(ȳ), ȳ = (y1, . . . , ynα), in the language of G0.

Hypothesis: There is an algorithm which constructs the following
in the language of M0.

(a) For any given α ∈ Λ0 a presentation (Π, c̄), where c̄ = (c1, . . . , cN),
and terms ū = (u1, . . . , uN) with N := Nα ≥ n := nα
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(b) For each r-ary operation symbol f of G0, a term f#(z̄, x̄), z̄ =
(z1, . . . , zr) where x̄ = (x1, . . . , xN).

Now, for a formula γ(ȳ) in the language of G0, the translation according
to (b) into a formula in the language ofM0 is denoted by γ#(ȳ, x̄) and
the following are required.

(i) (Π, c̄) is projective for M0 with witnessing terms t̄.
(ii) If (L, ā) is a model of (Π, c̄) in M0 then so is (L, ū(ā)).
(iii) For any α ∈ Λ0, (Π, c̄) implies α#(ū(c̄)|n), ū(c̄)) in M0.
(iv) For any model (L, ā) of (Π, c̄) with L ∈ M0, the algebra G =

G(L, ū|n(ā)) generated by ū|n(ā) under the operations b̄ 7→
f#(b̄, ū|n(ā)), f an operation symbol of G0, is a member of G0

and (G, ū|n(ā)) |= α(ū|n(ā)).
(v) For any α ∈ Λ0 and G ∈ G0, with generators ḡ = (g1, . . . , gn)

such that G |= α(ḡ), there is a model (L(G, ḡ), ā) of (Π, c̄) with
L(G, ḡ) ∈ M0 and ū(ā) = ā and, moreover, such that there
is an embedding ω : G → G(L(G, ḡ), ā) with ω(gi) = ai for
i = 1, . . . , N .

Lemma 2.4. Given an algorithm satisfying the above hypothesis, there
is an algorithm associating with any quasi-identity β, with antecedent
α ∈ Λ0 in the language of G0, an equation β∗ in the language of M0

such that β holds in G0 if and only if β∗ holds in M0.
In particular, if a presentation Ψ in n generators in the language of

G0 is given, then the restricted word problem for Ψ within G0 reduces
to the decision problem for N-variable identities within M0 where N
is the number of generators in the presentation (Π, c̄), required in (a)
above.

Proof. By (b), there is an algorithm associating, uniformly for all n,N
(n ≤ N), with any term w(ȳ) in the language of G0 a term w#(ȳ, x̄) in

the language of M0 such that y#
i (ȳ, x̄) = yi and

(f(w1(ȳ), . . . , wn(ȳ)))#(ȳ, x̄) = f#(w#
1 (ȳ, x̄), . . . , w#

n (ȳ, x̄)).

Now, given β ≡ ∀y.(α(ȳ)⇒ w(ȳ) = v(ȳ)) where α ∈ Λ0, let β∗ denote
the identity ∀x̄. γ(x̄) where γ(x̄) denotes

w#(u1(t̄(x̄)), . . . , un(t̄(x̄)), ū(t̄(x̄))) =

= v#(u1(t̄(x̄)), . . . , un(t̄(x̄)), ū(t̄(x̄)))

with ui(x̄) according to (a). Assume that β∗ holds inM0 and consider
G ∈ G0 and ḡ in G such that G |= α(ḡ). Given (L(G, ḡ), ā) according
to (v), one has ui(ā) = ai for all i whence, due to validity of β∗,

ω(w(ḡ)) = w#(ā|n, ā) = w#(ū(ā)|n), ū(ā)) =
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= v#(ū(ā)|n, ū(ā)) = v#(ā|n, ā)) = ω(v(ḡ))

and w(ḡ) = v(ḡ) follows, verifying β for G0.
Conversely, assume that β holds for all G in G0 and consider any

L ∈ M0 and ā = (a1, . . . , aN) in L. That (L, ū(t̄(ā))) is a model of
(Π, c̄) is obtained combining (i) and (ii) and by (iii) it follows that
L |= α#(ū(t̄(ā))|n, ū(t̄(ā))). Thus, by (iv) G := G(L, ū(t̄(ā))|n) is in G0

and α(ū(t̄(ā))|n) holds in G. Now, the quasi-identity β being valid in
G0, it follows G |= γ(ū(t̄(ā))|n, ū(t̄(ā))); that is, the identity β∗ holds
in L for the substitution ā.. �

3. Some projective modular lattice presentations

3.1. Terms and lattices. For concepts of lattice theory we refer to
Birkhoff [1], for modular lattices also von Neumann [21]. For better
readability, joins and meets will be written as x + y and x · y = xy,
assuming associativity, commutativity. and idempotency for both op-
erations. That is, the term algebra FT (x̄) is the free algebra in the
variety T of algebras (A,+, ·) where (A,+) and (A, ·) are commutative
idempotent monoids. Thus, the word problem for free algebras in T
has a (simple) solution and we may use expressions

∑
i ai and

∏
i ai

- to be read as (
∑

i ai) and (
∏

i ai), respectively. For convenience, we
also use the rule that s · t+ u = st+ u reads as (st) + u.

A lattice L is a member of T which satisfies the absorption laws

x(x+ y) = y and x+ xy = x.

For lattices, x ≤ y ⇔ x = xy (we also write y ≥ x) defines a partial
order ≤ and one has a ≤ b if and only if a = a + b. With respect to
this partial order, a + b is the supremum, ab the infimum of a, b. If L
has a smallest resp. greatest element these will be denoted by ⊥L and
>L, respectively. A set {a1, . . . , an} in L such that

∑
i ai = >L and∏

i ai = ⊥L will be called spanning in L. In particular, this applies if
L is generated by a1, . . . , an. For a ≤ b in L, the interval [a, b] = {c ∈
L | a ≤ c ≤ b] is a sublattice of L; an ideal of L is. sublattice I such
that b ∈ I for any b ≤ a ∈ I. The word problem for free lattices is well
known to be solvable, but for simplicity we prefer to consider terms in
T .

A chain Cn of length n is a presentation with generators di, i =
0, . . . , n, and relations di ≤ di+1, i < n. Obviously, chains are projective
within the class of all lattices.

3.2. Modular lattices. A lattice is modular if it satisfies the identity
x(y + xz) = xy + xz, equivalently, if a(b + c) = ab + c for all c ≤ a.
The class of all modular lattices is denoted by M. Projectivity of
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presentations will always refer to M. Examples of modular lattice are
the lattices L(RM) of all submodules of R-modules, with operations +
and ∩.

Fact 3.1. In a modular lattice, x 7→ x+ b is an isomorphism of [ab, a]
onto [b, a+ b] with inverse y 7→ ya.

Accordingly, we define x̄↗ ȳ to stand for the formula
n∧
i=1

(
yi = xi +

n∏
j=1

yj ∧ xi = yi ·
n∑
j=1

xj
)
.

Observe that x̄↗ ȳ and ȳ ↗ z̄ jointly imply x̄↗ z̄. Also observe that
x̄↗ ȳ, x̄↗ z̄ and ȳ ≤ z̄ jointly imply ȳ ↗ z̄. Writing x̄1 ↗ . . .↗ x̄m

we require x̄i ↗ x̄j for all i < j ≤ m.

Call elements a1, . . . , an of a modular lattices relatively independent
(over b) if b = ak ·

∑
i<k ai for all 1 < k ≤ n. This implies that any

permutation of a1, . . . , an is independent over b, too, and that the ai
generate a boolean sublattice B with smallest element b and the ai = b
or atoms of B.

Fact 3.2. In a modular lattice, if u, v, w are relatively independent over
t, then (x, y, z) 7→ x+y+z defines an embedding of [t, u]× [t, v]× [t, w]
into [t, u + v + w]. In particular, for t ≤ u′ ≤ u′′ ≤ u, t ≤ v′ ≤
v′′ ≤ v, and t ≤ w′ ≤ w′′ ≤ w the sublattice generated by these 3
chains is isomorphic to the direct product of these chains. and the above
embedding restricts to isomorphisms x 7→ x + v′ of [u′ + w′, u′′ + w′′]
onto [u′+ v′+w′, u′′+ v′+w′′] and y 7→ y+u′ of [v′+w′, v′′+w′′] onto
[u′ + v′ + w′, u′ + v′′ + w′′], respectively.

See Fig. 1. For the proof observe, that one can assume t = 0 and
that the case w = 0 is well known. The analoguous result holds for any
number of relatively independent elements.

3.3. Products of presentations. Given presentations (Πj, (⊥, c̄j)),
where c̄j = (cj1, . . . , c

j
nj

) for j = 1, 2 with pairwise distinct cji and,

for j = 1, 2, relations in Πj implying ⊥ ≤ cji for all i, the product
(Π1, (⊥, c̄1))×(Π2, (⊥, c̄2)) is the presentation (Π, (⊥, c̄)) with generator
symbols

⊥ and c̄ = (c1
1, . . . , c

1
n1
, c2

1, . . . c
2
n2

)

and, in addition to the relations of the (Πj, (⊥, c̄j)), the relations
n1∑
i=1

c1
i ·

n2∑
k=1

c2
k = ⊥.
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Fact 3.2 implies the following well known fact.

Fact 3.3. Within M, products of projective presentations are projec-
tive. Moreover, given models (Lj, (a

j
0, ā

j)) of (Πj, (⊥, c̄j)) inM one has
L1 × L2 a model of the product with generators mapped to (a1

i , a
2
0) and

(a1
0, a

2
k), respectively; moreover, any model of the product is isomorphic

to such.

3.4. Frames. Frames have been introduced by von Neumann [21] for
coordinatizing complemented modular lattices. Given n independent
generators ei of an R-module RM , the canonical n-frame in L(RM)
consists of ai = Rei, c1j = R(e1− ej), and a⊥ = {0}. This is mimicked
by the following presentation.

An n-frame Φ is a lattice presentation with generators a⊥, a1, . . . , an,
c1j = cj1 (2 ≤ j ≤ n) and relations

(1) a⊥ = aj(
∑j−1

i=1 ai)
(2) a⊥ = a1c1j = ajc1j

(3) a1 + aj = a1 + c1j = aj + c1j

where 2 ≤ j ≤ n. See Fig. 2
An equivalent presentation is obtained by replacing a⊥ by a1a2. A

model (inM) of (an) n-frame is referred to as “an n-frame in a modular
lattice”; otherwise, speaking of “an n-frame” we mean a presentation
as above, possibly with renamed generators.

We define a> =
∑n

i=1 ai and write also a> = aΦ
> = >Φ, ai = aΦ

i ,
cij = cΦ

ij, and a⊥ = aΦ
⊥ = ⊥Φ. The list of generators with indices not

involving k is written as Φ 6=k. Observe that Φ implies, within M, the
relations of n− 1-frames for Φ6=k and ak + Φ 6=k and that

Φ6=k ↗ ak + Φ 6=k.

Also observe, that the concept of n-frame can be defined, recursively:
start with that of 2-frame, as defined above; now, given the concept
of n-frame Φ, obtain the n+ 1-frame Φ+ adding to the generators and
relations of Φ the generators an+1 and c1,n+1 and relations (2) and (3)

for j = n+ 1 - renaming aΦ
⊥ into aΦ+

⊥ .
The following is a special case of Dedekind’s description of 3-generated

modular lattices.

Fact 3.4. The modular lattice freely generated by a, a′, c such that aa′ ≤
c ≤ a + a′ has diagram given in Fig. 3. In particular, with b = ac
and d = a(a′ + c) one has a 2-frame b + a′c, d + a′c, a′(a + c), c and
b.d↗ b+ a′c, d+ a′c.



10 C. HERRMANN

3.5. Reduction. Given an n-frame Φ and variables x, y, put

a⊥(x, y) ≡ x+
∑
j>1

aj(x+ c1j) and a>(x, y) ≡ y +
∑
j>1

aj(y + c1j)

and introduce for each remaining generator symbol c in Φ the term

ĉ(x, y) ≡ c · a>(x, y) + a⊥(x, y).

Observe that for all models of Φ in a modular lattice L and b, d in L with
a⊥ ≤ b ≤ d ≤ a1 one has the identity ĉ(b, d) = (c + a⊥(b, d)) · a>(b, d).
Let Φ(x, y) = Φy

x denote the list of terms ĉ(x, y), c a generator symbol
of Φ; this is called the reduction setup for n-frames.

If Φ is part of a presentation Π and b, d are terms over Π then Φb
d is

obtained substituting b, d for x, y; Φb
d is called the reduction of Φ via

b, d. We put Φb = Φb
a⊥

and Φd = Φa1
d .

If B ⊆ D are left-ideals of the ring R, then the reduction of the
canonical n-frame of L(RR

n) by b = Be1 ≤ d = De1 is given by

a′⊥ =
n∑
i=1

Bei, a
′
i = a′⊥ +Dei, c

′
1j = a′⊥ +D(e1 − ej), a′> =

n∑
i=1

Dei.

See [5, Lemma 1.1] and Fig. 4 for the following.

Lemma 3.5. For any n-frame Φ and a⊥ ≤ b ≤ d ≤ a1 in a modular
lattice, L, one has the following

(1) Φb
d is an n-frame in L.

(2) d, b↗ (a1)Φbd , (a⊥)Φbd ↗
∑

Φb
d,
∑

i 6=1 a
Φbd
i ↗

↗ d+
∑

i 6=1 ai, b+
∑

i 6=1 ai.

(3) a
Φbd
> ·

∑
Φ 6=1, a

Φbd
⊥ ·

∑
Φ 6=1 ↗ (Φb

d) 6=1, a
Φbd
⊥ .

(4) (Φ6=k)
b
d ↗ (Φb

d) 6=k ↗ (ak)
Φbd + (Φb

d)6=k ↗ (ak + Φ 6=k)
ak+b
ak+d

for k > 1..
(5) If b = a⊥ and d = a1 then Φb

d = Φ.

3.6. Towers of 2-frames. An n-tower of 2-frames is a presentation
∆(n) = ∆(2, n) which is the disjoint union of 2-frames (Φk, ak⊥.a

k
i , c

k
1j),

k = 1, . . . , n, with the additional relations

ak>, a
k
2 ↗ ak+1

1 , ak+1
⊥ for 1 ≤ k < n.

It follows that an2a
1
1 = a1

⊥ and an2 + a1
1 = an>. Referring to the reduction

setups Φk(x, y) of the 2-frames Φk, define the reduction setup ∆(n)(x, y)
as the union of the Φk(x + ak⊥, y + ak⊥) and the reduction ∆(n)bd =
∆(n)(b, d). The following is due to Alan Day [3, Thm.5.1]

Lemma 3.6. (i) Within M, n-towers of 2-frames are projective.
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(ii) FM(∆(n)) is the disjoint union of 5-element interval sublat-
tices Φk ∪ {ak>}.

(iii) FM(∆(n)) is generated by the n + 2-elements a1
1, a

n
2 , c

k
12(1 ≤

k ≤ n).
(iv) If ∆(n) is an n-tower of 2-frames in a modular lattice L and

if a1
⊥ ≤ b ≤ d ≤ a1

1 then ∆(n)bd is an n-tower of 2-frames
a′k⊥, a

′k
1 , a

′k
2 , c

′k
12 in L and with u = an2 ≥ u′′ = ua′n2 ≥ u′ = ua′1⊥

and w = a1
1 ≥ w′′ = d ≥ w′ = b ≥ a1

⊥ one has uw = a1
⊥,

a′1⊥ = u′ + w′, and a′n> = u′′ + w′′. Moreover, if d = a1 then
w′′ = w and u′′ = u. If, in addition, b = a1

⊥ then ∆(n)bd = ∆.

Proof. (i)-(iii) are in [3]. (iv) follows from (1) and (2) of Lemma 3.5,
readily. See Fig. 5. �

3.7. Towers of 3-frames. An n-tower of 3-frames is a presentation
∆(3, n) consisting of the product of an n-tower ∆(n) of 2-frames with
the chain a1

⊥ ≤ a1
3 and an additional generator c1

13 such that a1
⊥, a

1
1, a

1
3, c

1
13

is a 2-frame Φ. In particular, by Fact 3.2 an2 (a1
1 +a1

3) = a1
⊥ = (a1

1 +a1
2)a1

3

whence Φ1 together with a1
3, c

1
13 forms a 3-frame. See Fig. 6

Lemma 3.7. n-towers of 3-frames are projective within M.

Proof. By Facts 3.3, 2.1, and Lemma 3.6, the product of ∆(n) with the
chain a1

⊥ ≤ a1
3 is projective within M and strengthening with

c1
13 := (c1

13 + a1
⊥)(a1

1 + a1
3)

yields the additional relations a1
⊥ ≤ c1

13 ≤ a1
1 + a1

3. Now, in view of
Fact 3.4 put

b = a1
1c

1
13 and d = a1

1(c1
13 + a1

3)

(∗) v = a1
3 ≥ v′′ = a1

3(a1
1 + c1

13) ≥ v′ = a1
3c

1
13 ≥ a1

⊥

to obtain the 2-frame Φ′ = (b+v′, d+b+v′, v′′+b, c1
13+b+v′, d+v′′). Now,

together with the chains defined in (iv) of Lemma 3.6, apply Fact 3.2
to obtain the n-tower v′ + ∆(n)bd spanning [u′ + w′ + v′, u′′ + w′′] and
the 2-frame u′ + Φ′ spanning [u′ + w′ + v′, w′′ + v′′]. This verifies the
strengthening

∆(n) := v′ + ∆(n)bd, a
1
3 := u′ + w′ + v′ + a1

3, c
1
13 := u′ + w′ + v′ + c1

13

and proves the lemma. �

The reduction setup ∆(3, n)(x, y) is the union of ∆(n)(x, y) and
Φ(x, y).

Corollary 3.8. (i) If ∆(3, n) is an n-tower of 3-frames in a mod-
ular lattice L and if b, d ∈ L such that a1

⊥ ≤ b ≤ d ≤ a1
1 then

∆(3, n)bd := ∆(3, n)(b, d) is also an n-tower of 3-frames in L
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and spans the interval [u′+w′+v′, u′′+w′′+v′′] with the chains
from (∗) and (iv) of Lemma 3.6.

(ii) Redefining two of the chains into one, namely u := u + v ≥
u′′ := u′′ + v′′ ≥ u′ := u′′ + v′′ one has that ∆(3, n)bd spans the
interval [u′ + w′, u′′ + w′′]. Moreover, if d = a1

1 then w = w′′

and u = u′′.

3.8. Towers of skew frames. A skew (n + 1, n)-frame is the lattice
presentation Ψ given by the product of an n-frame Φ with the chain
a⊥ ≤ a′n+1 and an additional generator c′1,n+1 such that the list of terms
a⊥, b = a1(a′n+1 +c′1,n+1), a′n+1, c

′
1,n+1 satisfies the relations of a 2-frame.

See Fig. 7.
An n-tower Ω(m,n) of skew (m,m − 1)-frames is the presentation

given as the product of an n-tower ∆(m − 1, n) of m − 1-frames with
the chain a1

⊥ ≤ a′m and an additional generator c′1m subject to relations
stating that a1

⊥, a
1
1(a′4 + c′1m), a′m, c

′
1m is a 2-frame. See Fig. 8. We put

Ω(n) = Ω(4, n) and speak of n-towers of skew frames.

Theorem 3.9. n-towers of skew frames can be defined in terms of n+6
generators and are projective within M.

Proof. n+ 2 generators provide the n-tower of 2-frames, 2 more the n-
tower of 3-frames, and another 2 are used to turn this into an n-tower
of skew frames.

Omitting the relations concerning c′14, projectivity withinM follows
from Lemma 3.7 and Facts 3.3, 2.1. A first strengthening

c′14 := (c′1m + a1
⊥)(a1

1 + a′4)

adds the relations a1
⊥ ≤ c′14 ≤ a1

1 +a′4. In view of Fact 3.4 put b = a1
1c
′
14

and v = v′′ = a′14 (a1
1 + c′114) ≥ v′ = a′14 c

′1
4 and let M denote the interval

[b + v′, a1
1 + v′] of the sublattice generated by a1

1, a
′1
4 , c

′1
14. Consider the

reduction ∆(3, n)b
a1

1
and apply Fact 3.2 to the chains u′ = u′′ ≥ u′ and

w = w′′ ≥ w′ from (ii) of Cor.3.8 and v = v′′ ≥ v′. This yields the
n-tower v′ + ∆(3, n)b

a1
1

spanning [u′ + v′ + w′, u + v′ + w] and u′ + M

spanning [u′ + v′ + w′, u′ + v + w] and verifies the final strengthening

∆(3, n) := ∆(3, n)ba1
1
, c′114 := c′114 + u′, a′14 := (a1

1 + u′ + v′)(c′114 + v + u′).

�

The presentations n-tower of 2- resp. 3-frames and n-tower of skew
(4, 3)-frames have been constructed explicitly and uniformly for all n.
This results in the following.

Corollary 3.10. There is an algorithm constructing for each n the
presentation Ω(n), projective within the class of modular lattices.
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4. Structure of towers of skew frames

While projectivity within M of the presentation “n-tower (of skew
frames)” has been established in Theorem 3.9, in this section we col-
lect the needed concepts and results about models of this and related
presentations - considered as lists of elements or configurations. Maps
are supposed to match such lists. If such list is the concatenation of
parts we say that it is obtained by combining these parts. We will use
ā to denote lists of elements, in general, not necessarily the a1, . . . , an
of an n-frame.

First, we recall some more details about particular elements in sub-
lattices generated by (skew) frames - used in equivalent presentations
e.g. in [10].

4.1. Frames. A well known equivalent definition of frames is obtained
es follows cf [4]. Consider an n-frame Φ in a modular lattice L and
define cij = cji = (ai + aj)(c1i + c1j) for 1 6= i 6= j 6= 1, Then it follows

(
∑
i∈I

ai)·(
∑
j∈J

aj) =
{ a⊥ if I ∩ J = ∅∑

k∈I∩J ak else
for I, J ⊆ {1, . . . , n},

and, for pairwise distinct i, j, k,

ai + aj = ai + cij, ai · cij = a⊥

cik = (ai + ak) · (cij + cjk).

We also write ⊥Φ = aΦ
⊥, a

Φ
i , c

Φ
ij for these elements and >Φ =

∑n
i=1 ai.

Observe that, for any k, the ai, cij with i, j 6= k form an n − 1-frame
Φ6=k in L. An important property of frames is the existence of the
perspectivities πkl, k 6= l, that is lattice isomorphisms between intervals
of L matching Φ6=k with Φ 6=l

πkl : [a⊥,
∑
i 6=k

ai]→ [a⊥,
∑
i 6=l

ai] where πkl(x) = (x+ ckl)
∑
i 6=l

ai.

4.2. Reduction of frames. Given a frame Φ and b1 ∈ L such that
a⊥ ≤ b1 ≤ a1, define

bj = aj(b1 + c1j) for j 6= 1, b =
n∑
j=1

bi, and bij = (bi + bj)cij

to obtain, by upper reduction with b1, the frame

Φb1 = Φb1
a⊥

= (b, b+ ai(1≤i≤n), b+ cij(i 6=j))

and by lower reduction the frame

Φb1 = Φa1
b1

= (a⊥, bi(1≤i≤n), bij(i 6=j)).
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In view of the perspectivities, in both cases the resulting frame is the
same if, for some i 6= 1, the construction is carried out based on a⊥ ≤
bi ≤ ai such that b1 = a1(bi + c1i).

4.3. Stable elements. Given a modular lattice L, element s of L and
an n-frame Φ in L, the element s is j-stable in L for Φ if

sa1 = saj = a⊥ and s+ a1 = s+ aj = a1 + aj

and for all upper reductions with b1 ∈ L, a⊥ ≤ b1 ≤ a1 one has

s+ b1 = s+ bj.

In view of the perspectivities, if s is j-stable for Φ then πjk(s) is k-
stable for Φ. This crucial concept is due to Ralph Freese [6]. See [10,
Lemma 2,3] for the following

Fact 4.1. If s is j- stable in L for Φ then for all b1 ∈ L with a⊥ ≤
b1 ≤ a1, one has s+ b j-stable in Φb1 and sb j-stable in Φb1.

.

4.4. Skew frames. Using the above view (Subsection 4.1) on frames
in modular lattices, an equivalent definition of a skew (n+ 1, n)-frame
Ψ = (Φ′,Φ) in a modular lattice L is that of a configuration which is
composed by the n-frame Φ and the n+1-frame Φ′ such that Φ′6=n is the
reduction Φa′1

, in particular a⊥ = a′⊥. Observe that the perspectivity
πkl of Φ induces the perspectivity πkl of Φ′6=n. We will deal with the
cases (3, 2) and (4, 3), only.

Our basic example of a skew (4, 3)-frame is as follows: For a prime
p consider the Z-module A with generators ei, i = 1, 2, 3, 4 and rela-
tions p2ei = 0 for i ≤ 3, pe4 = 0. Then a skew (4, 3)-frame in the
submodule lattice L(A) is obtained as follows: Let a⊥ = 0, ai = Zei,
cij = Z(ei − ej), a′i = Zpei, c′ij = Z(pei − pej), for i, j ≤ 3, a′4 = Ze4,
and c′i4 = Z(pei − e4).

Dealing with a skew (4, 3)-frame Ψ we consider Ψ(3,2) given by gen-

erators not involving index 2 and Ψ(3,2) = a2 + Ψ(3,2). Observe that

Ψ(3,2) ↗ Ψ(3,2) and that the relations of a skew (3, 2)-frame are implied
by those of a skew (4, 3)-frame, in both cases.

For a⊥ ≤ b1 ≤ a′1 ≤ d1 ≤ a1 in L the lower reduction Ψb1,d1 is the
skew (n + 1, n)-frame which combines the lower reductions Φ′b1 and

Φd1 . For a⊥ ≤ b1 ≤ a′1 in L the upper reduction Ψb1 combines the
upper reductions Φ′b1 and Φb1 .
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4.5. Towers of skew frames.

Observation 4.2. Within M a presentation equivalent to that of an
n-tower Ω(n) is given by a list ā combining the skew (4, 3)-frames Ψk =
(Φ′k,Φk) (1 ≤ k ≤ n) each consisting of the 4-frame Φ′k and the 3-frame
Φk where

Φ′k = ā′k = (a′ki , c
′k
ij | i, j ≤ 4, i 6= j), Φk = āk = (aki , c

k
ij | i, j ≤ 3, i 6= j)

such that

(∗) Ψk
(3,2) ↗ (Ψk)(3,2) ↗ Ψl

(3,2) ↗ (Ψl)(3,2) for 1 ≤ k < l ≤ n.

Observe that Ψk
(3,2) consists of the aki , c

k
ij, a

′k
i , c

′k
ij where i, j 6= 2 and

that (Ψk)(3,2) = ak2 + Ψk
(3,2). The exceptional role of index 2 (linked to

the “upward direction”) comes out of the construction of n-towers and
fits to the application of [10].

Proof. Recall the definition of n-towers Ω(n) of skew frames in Subsec-
tion 3.8 and observe that the a1

i , c
1
ij, a

′1
i , c

′1
ij form a skew (4, 3) frame

Ψ1, that an2 , a
1
1, a

1
3, a
′1
4 are relatively independent over a1

⊥, and that
ak1 = ak⊥ + a1

1. Thus, Ψ1
(3,2) is a skew (3, 2)-frame whence so is (for

each k > 1) ak⊥ + Ψ1
(3,2) which combines with ak2, c

k
12 to form a skew

(4, 3)-frame Ψk such that Ψ1
(3,2) ↗ Ψk

(3,2). This proves (∗) in view of
the remarks following Fact 3.1 and applies also to skew frame as con-
sidered in the preceding Subsection. �

A model is obtained from the submodule lattice of the free Z module
with generators e1, e2, e3, e4 and relations p2e1 = 0, p3n−1e2 = 0, p2e3 =
0 and pe4 = 0. Indeed, put (where i = 1, 3)

ak⊥ = Zp3(n−k)+2e2, a
k
2 = Zp3(n−k)e2, c

k
2i = Z(p3(n−k)e2 − ei)

aki = ak⊥ + Zei, ck13 = ak⊥ + Z(e1 − e3), cki2 = ak⊥ + Z(ei − p3(n−k)e2)

a′k2 = Zp3(n−k)+1e2, c
′k
2i = Z(p3(n−k)+1e2−pei), c′k24 = Z(p3(n−k)+1e2−e4),

a′ki = ak⊥ + Zpei, c′k13 = ak⊥ + Z(pe1 − pe3), c′ki4 = ak⊥ + Z(pei − e4).

4.6. Reduction of towers. Given an n-tower Ω(n) = ā in a modular
lattice L, consider fixed m > 0 and b1, d1 ∈ L such that

am⊥ ≤ b1 ≤ a′m1 ≤ d1 ≤ am1 .

The lower reduction Ω(n)b1,d1 of Ω(n) combines the following reduc-
tions of skew-frames Ψk = (Φ′k,Φk)

(Φ′k
ak1b1

, Φk
ak1d1

) for 1 ≤ k < m

(Φ′mb1 , Φm
d1

)
(Φ′k

b1+ak⊥
, Φk

d1+ak⊥
) for m < k ≤ n
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Given b1 ∈ L such that

am⊥ ≤ b1 ≤ a′m1

the upper reduction Ω(n)b1 of Ω(n) combines the following reductions
of skew-frames Ψk = (Φ′k,Φk)

((Φ′k)a
k
1b1 , (Φk)a

k
1b1) for 1 ≤ k < m

((Φ′m)b1 , (Φm)b1)

((Φ′k)b1+ak⊥ , (Φk)b1+ak⊥) for m < k ≤ n

We speak of the lower resp. upper reduction of Ω(n) induced by the
reduction of Ψk.

Observation 4.3. If the configuration Ω(n) is an n-tower of skew
frames Ψk = (a′k, c′kij , a

k, ckij) in a modular lattice, L, then so are any
of its lower reductions Ω(n)b1,d1 where b1, d1 ∈ L and any of its upper
reductions Ω(n)b1 where b1 ∈ L. Moreover, if φ : L → L′ is a ho-
momorphism into a modular lattice L′ such that φ(b1) = φ(a′m⊥ ) and
φ(d1) = φ(am1 ) resp. φ(b1) = φ(am⊥ ) then φ(Ω(n)) = φ(Ω(n)b1,d1) resp.
φ(Ω(n)) = φ(Ω(n)b1), as configurations in L′.

5. Coordinates and characteristic

5.1. Coordinate ring. Following von Neumann [21] (cf. Freese [4,
5, 6] and [11, Lemma 6]) with any 4-frame Φ in a modular lattice
L and choice of 3 different indices (here we use 1, 3, 4) one obtains
a (coordinate) ring R(Φ, L) with unit c13 and zero a1, the elements
of which are the r ∈ L such that ra3 = a⊥ and r + a3 = a1 + a3.
More precisely, there are binary lattice terms x ⊕z̄ y and x ⊗z̄ y and
a unary term 	z̄x defining these coordinate rings. Here, one has z̄ =
(zi, zij|i, j 6= 2) corresponding to the 3-frame (ai, cij|i, j 6= 2). For given
L and Φ these rings are isomorphic for any choice of the triple of indices
- via the perspectivities resp. compositions thereof,

If L embeds into the the subgroup lattice of an abelian group A and
if Φ = (ai, cij | i, j 6= 2) is a 3-frame in L then the above definitions
apply to obtain the ring R(Φ, L), embedded into the endomorphism
ring of the associated subquotient of A.

An element r of R(Φ, L) is invertible if and only if ra1 = a⊥ and
r + a1 = a1 + a3; these form the group R∗(Φ, L) of units in the ring
R(Φ, L). Moreover, there is a lattice term t(x, z̄) such that t(r, ā) is
the inverse of r if r is invertible.

5.2. Stable elements. Obviously, 3-stable elements are invertible.
Again, the following crucial tool is due to Ralph Freese [6].



17

Lemma 5.1. (i) The elements of L which are 3-stable for the 4-
frame Φ in L form a subgroup R#(Φ, L) of the group R∗(Φ, L)
of units.

(ii) For each b1 ∈ L with a⊥ ≤ b1 ≤ a1 the map r 7→ r + ⊥Φb1 is a
homomorphism βb1 : R#(Φ, L)→ R#(Φb1 , L).

(iii) If r is 3-stable for Φ and b1 = a1(r + c13) then βb1(r) = cΦb1
13 is

the unit of R#(Φb1 , L).

Proof. (i) and (ii) are Lemma 1.3-6 of [6]. For convenience, we prove

(iii). With b = ⊥Φb1 one has r+ b = r+ b1 + b = (a1 + r)(c13 + r) + b ≥
c13 + b and equality follows since by (ii) both are complements of a3 + b
in [b, b+ a1 + a3]. �

5.3. Characteristic. With the term x ⊕z̄ y of Subsection 5.1, define
recursively, 1⊗z̄ z14 = z14 and (n+ 1)⊗z̄ z14 = z14⊕z̄ (n⊗z̄ z14). In the
sequel, p will be a fixed prime. The 4-frame Φ = ā has characteristic p
if p⊗ā c14 = a1. Ralph Freese [4] has shown that, for any frame Φ = ā
in a modular lattice L, the frame Φa1(p⊗āc14) has characteristic p - and
equals Φ if Φ has characteristic p, already.

Let (z̄′, z̄) denote a list of variables to be used for substituting skew
(4, 3)-frames. In [10, p. 516], a term p32(z̄) has been defined and a skew
(4, 3)-frame (Φ′,Φ) = (ā′, ā) has been called of characteristic p × p if
Φ′ is of characteristic p and p32(ā) ≥ a′3 and a3 +p32(ā) = a′2 +p32(ā) =
a′2 + a3. The following is [10, Lemma 9] (in the proof given, there,
observe that b3 ≥ a′3 since p32 ≥ a′3).

.

Lemma 5.2. There are terms b1(z̄′, z̄) and d1(z̄′, z̄) such that for an¡
skew (4.3)-frame Ψ = (Φ′,Φ) in a modular lattice L one has

a⊥ ≤ b1 := b1(ā′, ā) ≤ a′1 ≤ d1 := d1(ā′, ā) ≤ a1

and obtains Ψb1,d1 of characteristic p× p. Moreover, if Ψ has charac-
teristic p× p then b1 = a⊥ and d1 = a1, that is Ψb1,d1 = Ψ.

As in Freese’s result, one can derive projectivity but, in contrast, it
appears unlikely that characteristic p×p is preserved under reductions.
Though, existence of stable elements is preserved (see Fact 4.1). The
following is a consequence of [10, Cor.13], applying the perspectivity
π23 to the term denoting the element g∗1 2-stable w.r.t. Φ′ constructed,
there.

Lemma 5.3. There is a term g+(z̄′, z̄) such that, for any skew (4, 3)-
frame Ψ = (Φ′,Φ) = (ā′, ā) of characteristic p× p in a modular lattice
L, one has g+(Ψ) = g+(ā′, ā) an element of L which is 3-stable for Φ′.
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6. Basic models

6.1. Glueing construction of Dilworth and Hall. Given intervals
Li = [ai, bi], i = 1, . . . , n, in a modular lattice, L, such that ai ≤ ai+1

and bi ≤ bi+1 for 1 ≤ i < n, the union of these intervals is a sublattice
of L and one has isomorphisms αi : [ci, bi] → [ai+1, di], i < n, with
αi(x) = x + ai+1 (and inverse α−1

i (y) = biy) where ci = biai+1 and
di = bi + ai+1. Conversely, given pairwise disjoint modular lattices
Li = [ai, bi] (i ≤ n) and isomorphisms αi : [ci, bi]Li → [ai+1], di+1]Li+1

(i < n) where ci ∈ Li and di+1 ∈ Li+1 there is a modular lattice L
which is the union of interval sublattices Li, related as above.

Also, one obtains a homomorphic image of L in which the intervals
[ci, bi] and [ai+1, di] are identified via αi. In case n = 2, write Lx = L1,
Ly = L2, and αyx = α1, denote this lattice by Lx ./ Ly, and observe
that for r ∈ Lx and s ∈ Ly one has

r +Lx./y s = (r +Lx a2) +Ly s and r ·Lx./y s = r ·Lx (b1 ·Ly s)

6.2. Glued sums. In this version, the construction of Dilworth and
Hall can be generalized replacing the chain a1 ≤ a2 ≤ . . . ≤ an by a
lattice, as done in [7] (cf. [10, Section 3]) - reportedly, this was well
known to Dilworth, already. We will describe only the special case used
here.

Consider a modular lattice L having sublattice S of height 3 with
greatest element 1 and an isomorphism x 7→ x∗ of S onto a sublattice
S∗ of L such that x < x∗ for all x ∈ S and such that L is the union
of its intervals Lx = [x, x∗], x ∈ S. Moreover, writing x ≺ y if y is an
upper cover of x in S, it is required that y ≤ x∗ for x ≺ y. Then L is
the S-glued sum of its interval sublattices Lx, (x ∈ S). In particular,
one has the sublattice Lx ./ Ly of L for x ≺ y and any join or meet in L
can be computed combining computations in these sublattices. Also,
L is (up to isomorphism) uniquely determined by S and the system
(Lx./y|x ≺ y in S) of sublattices.

Now, consider an ideal T of S and some set U of atoms in S such
that U ∩ T = ∅. Assume that, for all u ∈ U , φu0 an automorphism
of [u, 0∗] and, for any y ∈ S with u ≺ y, φyu : [φu0(y), u∗] → [y, u∗]
an isomorphism such that φyu coincides with φ−1

u0 on [φu0(y), 0∗] and is
identity on [1, u∗] for all u ∈ U . Put φyx identity on [y, x∗] for all other
x ≺ y.

Observation 6.1. Under the above hypotheses, there are a modular
lattice L′, embeddings σ : S → L′ and τ : S∗ → L′ such that L′

is the S-glued sum of its intervals L′x = [σ(x), τ(x)] where L′x = Lx
for x ∈ T . Moreover, there are isomorphisms ψx : Lx → L′x, (x ∈
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S), where ψx is identity for x ∈ T , such that ψx and ψy restrict to
the same isomorphism [y, x∗] → [σ(y), τ(x)] and ψx ∪ ψy provides an
isomorphism Lx./y → L′x./y for all x ≺ y. On the other hand, given all
this, LT =

⋃
x∈T Lx is an ideal of both L and L′ and

⋃
x∈T ψx identity

on LT . Calculations in L′ can be carried out combining calculations in
the L′x./y - which are calculations in L if x, y 6∈ U ..

6.3. Capturing a group generator by a stable term. Following
the construction in [10, Section 4], fix a prime p. Recall the lattice
L(A) from Subsection 4.4. Let 1 =

∑3
i=1 Zpei and S = [0,1]; that is,

S is the ideal L(pA) of L(A). Note that X 7→ X∗ = {v ∈ A | pv ∈ X}
is an isomorphism S → [pA + Ze4, A] and L(A) is the union of its
intervals [X,X∗], X ∈ S. Put T = [0,Zpe1 + Zpe3].

Given a group G, let Q denote the group ring Zp2(G) with coef-
ficients the integers modulo p2. The free Q-module B with genera-
tors e1, e2, e3, e4 and relation pe4 = 0 has subgroup A generated by
e1, e2, e3, e4 and L(A) embeds into the Q-submodule lattice L(B) of B
via X 7→ ε(X) = QX; moreover, the union of intervals [QX,QX∗] in
L(B), X ∈ S, forms a sublattice L of L(B).

Now, LT (G) =
⋃
X∈T [QX,QX∗] is an ideal of L. Moreover, in LT (G)

there is a (canonical) skew (3, 2)-frame Ψ0 = (Φ′0,Φ0) given by the
submodules

Φ′0 : Qpe1, Qpe3, Qe4, Q(pe1 − pe3), Q(pe1 − e4), Q(pe3 − e4)

Φ0 : Qe1, Qe3, Q(e1 − e3).

Choose L0(G) as the ideal [0,>Ψ0
(3,2) ] of LT (G). The group G embeds

into the group of units of the coordinate ring R(Φ′0, L0(G)) via

g 7→ Q(pe1 − gpe3).

Lemma 6.2. For each group G and g ∈ G there is a modular lat-
tice L(G, g) with spanning skew (4, 3)-frame Ψ = (Φ′,Φ) of charac-
teristic p × p and an isomorphism ω from L0(G) onto the interval
L0(G, g) = [0,>Ψ(3,2) ] of L(G, g) matching the skew (3, 2)-frame Ψ0 of
L0(G) with Ψ(3,2), inducing an isomorphism from R(Φ′0, L0(G)) onto
R(Φ′, L0(G, g)), and such that

(∗) ω(Q(pe1 − gpe3) = g+(Ψ).

Proof. Leaving (∗) aside, the lattice L(G, g) and the isomorphism ω
have been constructed in [10, Section 4] according to the scheme in
Observation 6.1. Actually, we may assume LT (G) an ideal of L(G, g)
and ω identity. Moreover, according to [10, Lemma 18] one has

Q(pe1 − gpe2) = g∗(Ψ) ∈ LT (G)
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with g∗(Ψ) stable for Φ′ according to [10, Cor.13] and (∗) follows ap-
plying the perspectivity π23 cf. Lemma 5.3.

Observe that in [10] Zp has been used to denote both the ring Z/pZ
and the ideal pZp2 of Zp2 = Z/p2Z. Similarly, R denoted both the
ring Q/pQ and the ideal pQ of Q. In this context, given an element
a =

∑3
i=1 riei ∈ A one has the subgroup Zpa = Z

∑3
i=1 ripei of pA and

given b =
∑3

i=1 riei ∈ B one has the Q-submodule Rb = Q
∑3

i=1 ripei
of pB. �

6.4. Basic model.

Theorem 6.3. For each group G with generators ḡ = (g1, . . . , gn) in
G there is a modular lattice L(G, ḡ) such that the following hold

(1) L(G, ḡ) contains an n-tower Ω(n)can (to be referred to as canon-
ical) of skew (4, 3)-frames Ψi = (Φ′i,Φi) of characteristic p× p,
i = 1, . . . , n

(2) There is an embedding γ : G → R(Φ′n, L(G, ḡ)) such that, for

all i, g+(Ψi) +⊥Ψn = γ(gi) and γ(gi) · (aΦ′i
1 + aΦ′i

3 ) = g+(Ψi).
(3) L(G, ḡ) is finite if G is finite.

Proof. Given i, consider L(G, gi) from Lemma 6.2 with skew (4, 3)-
frame Ψi = (Φ′i,Φi) and isomorphism ωi : L0(G)→ L0(G, gi). We may
assume that the L(G, gi) are pairwise disjoint lattices. Now,

αi(x) = ωi+1(ω−1
i (x · >Ψi

(3,2))) ∈ L0(G, gi)

defines an isomorphism

αi : [aΨi

2 ,>Ψi ]L(G,gi) → [⊥Ψi+1

,>Ψi+1
(3,2) ]Li+1(G,gi+1).

Let L(G, ḡ) arise by Dilworth-Hall glueing (as described in Subsec-
tion 6.1) the L(G, gi) via the isomorphisms αi.

one has, due to the glueing via the αi,

(∗∗) ωi(x) +⊥Ψj = ωj(x) for x ∈ L0(G)

for j = i + 1. The case i ≤ j < n as well as the relations required for
an n-tower follow by induction and transitivity of ↗ - recall Ψi

(3,2) ↗
Ψi(3,2). With the canonical embedding

η : G→ R(Φ′0, L(G, ḡ)) where η(x) = Q(pe1 − xpe3)

equation (∗) of Lemma 6.2 together with (∗∗) for j = n yield

ωn(η(gi)) = ωi(η(gi)) +⊥Ψn = g+(Ψi) +⊥Ψn .

Since G is generated by ḡ, ωn ◦ η restricts to an embedding γ : G →
R(Φ′n, L(G, ḡ)) as required in (2). �



21

7. Unsolvability

In order to prove Theorem 1.2 applying Slobodkoi’s Theorem 1.1,
we show that there is an algorithm reducing the Uniform Word Prob-
lem for the class G0 of all finite groups to the decision problem for the
equational theory of the classM0 of finite modular lattices. Moreover,
we observe that this reduction produces identities in n+ 6 lattice vari-
ables, if applied to group presentations in n generators. To prove the
reduction, we verify the hypotheses of Lemma 2.4.

Proof. Consider a finite group presentation given by words wj(ḡ), 1 ≤
j ≤ h in a list ḡ = (g1, . . . , gn) of generator symbols and relations
wj(ḡ) = e, j = 1, . . . , h. We construct a series of n-towers Ωm of skew
(4, 3)-frames

Ωm = (Ψk
m |k=1,...,n) = (Φ′km,Φ

k
m |k=1,...,n)

= (a′kmi, c
′k
m[j; a

k
mi, c

k
mij |k=1,...,n), 0 ≤ m ≤ µ = n+ h.

The list of generators of Ω0 is also denoted by ā, that of Ωm by ām.
Let F = F0 denote the modular lattice freely generated by the n-tower
Ω = Ω0. The construction will be such that Ωm generates a sublattice
Fm of F0 so that Fm+1 ⊆ Fm for all m < µ. Moreover, the following
will hold.

(A) For the 4-frame Φ′nµ = (a′nµ,i, c
′n
µ,ij) in Fµ one has a list of elements

s̄µ = (sµ1, . . . , sµn) in the group R#(Φ′µ, F ) such that wj(s̄µ) =
c′nµ,13 for 1 ≤ j ≤ h.

(B) For any group G and ḡ in G with wj(ḡ) = e for 1 ≤ j ≤
h one has φ(ā) = φ(āµ) and φ(sµi) = γ(gi) for i = 1, . . . , n
where φ : F → L(G, ḡ) is the homomorphism mapping ā onto
the canonical n-tower Ωcan of the lattice L(G, ḡ) constructed in
Thm. 6.3.

Observe that φ in (B) exists by Thms. 3.9 and 6.3 (1). This construc-
tion will be uniform for all group presentations, to be implemented by
an algorithm as required in Lemma 2.4.

In the context of this lemma, we consider quasi-identities β in the
language of groups with antecedent α the conjunction of identities
wj(ȳ) = e, j = 1, . . . , h, where ȳ = (y1, . . . , yn). The presentation
required in (a) of this Lemma is that of an n-tower Ω of skew frames -
with generator symbols ā. Recall from Thm. 3.9 that Ω can be defined
in terms of n+ 6 generators.

The terms ui(x̄) are chosen such that ū(ā) is the n-tower generating
Fµ within F . Hypothesis (i) is satisfied due to Cor 3.10. Concerning
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hypothesis (ii), consider an homomorphism φ : F → L ∈ M and
observe that φ(ū(ā)) = φ(āµ) = φ(ā) by (B).

The translation required in (b) is given by the constant c′n13 defining
the neutral element and the terms defining multiplication and inversion
in the group R#(Φ′n, F ) related to the 4-frame Φ′n = (a′ni , c

′n
ij ) which

is part of the n-tower ā. According to Subsections 5.1 and 5.2 this
translation satisfies hypothesis (iii) withinM. Also by this, the algebra
G in (iv) is indeed a group, finite if L is finite. Moreover, the generators
ū|n(φ(ā)) satisfy α by (A).

Finally, hypothesis (v) is granted by Theorem 6.3 and (B).
Outline of construction: To obtain āµ we put ā0 = ā and con-

struct, iteratively, n-towers Ωm = ām, m ≤ µ.
Case 1: m ≤ n

(1) The n-tower Ωm = ām is obtained from the n-tower Ωm−1 =
ām−1 by lower reduction, induced by a reduction of Ψm−1

m−1 to
Ψm
m, within the sublattice Fm−1 of F generated by ām−1,

(2) One has m elements sm1, . . . , smm 3-stable in F for the 4-frame
Φ′nm in Ωm.

(3) smi (i ≤ m−1) is obtained as in Fact 4.1 by the lower reduction
in (1) from sm−1,i stable in F for Φ′nm−1 while smm = s + ⊥Ψnm

where s = g+(Ψm
m) is 3-stable in F for the 4-frame Φ′mm .

(4) The reduction in (3) is chosen such that the skew frame Ψm
m−1

is reduced as in Lemma 5.2 to the skew frame Ψm
m having char-

acteristic p× p.
Case 2: n < m ≤ µ = n+ h.

(5) ām is obtained from ām−1 by upper reduction within the sub-
lattice Fm−1 of F generated by ām−1.

(6) One has a list s̄m of n elements stable in F for the 4-frame Φ′nm
and satisfying wj(s̄m) = c′nm,13 for j ≤ m− n, within the group

R#(Φ′nm, F ).
(7) These are obtained from s̄m−1 by the upper reduction in (5).

Proof of (A) and (B). We show, by induction, that for all m ≤ µ

• φ(ām) = φ(ā), that is φ(Ωm) = φ(Ω).
• s̄m is a list of stable elements for Φ′nm
• φ(smi) = γ(gi) for i ≤ min(m,n).
• wj(s̄m) = c′nm,13 where m ≥ n and j ≤ h = m− n.

The case m = 0 is just the definition of φ. For m ≤ n, we apply
Lemma 5.2 to Ψm

m−1, that is with b1 = b1(ā′mm−1, ā
m
m−1) and d1 =

d1(ā′mm−1, ā
m
m−1). By inductive hypothesis one has φ(Ψm

m−1) = φ(Ψm)
which is of characteristic p × p as part of the canonical n-tower of
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L(G, ḡ), whence φ(b1) = φ(⊥Ψmm) and φ(d1) = φ(a′Ψ
m
m) in view of (4).

It follows

φ(Ψm
m) = φ((Ψm

m−1)b1,d1) = (φ(Ψm
m−1))φ(b1),φ(d1) = φ(Ψm

m−1) = φ(Ψm).

This in turn implies φ(Ωm) = Φ(Ωm−1) in view of Observation 4.3. The
element s in (3) being chosen as s = g+(Ψm

m) according to Lemma 5.3 we
have s 3-stable for Φ′mm and smm 3-stable for Φ′nm due to the isomorphism
induced by (Ψm

m)3,2 ↗ (Ψn
m)3,2 which matches Φ′mm with Φ′nm. Moreover,

φ(smm) = γ(gm) by (2) of Thm. 6.3. For i < m the other hand,
according to (3) smi is obtained from sm−1,i as in Fact 4.1 applying the
reduction with b1 +an⊥ to the 4-frame Φ′nm−1. In particular, smi is stable
for Φ′nm. Since φ(Ωm) = φ(Ωm−1) it follows that φ(smi) = φ(sm−1,i) =
γ(gi).

For m = n + j we proceed with the same kind of reasoning, now
referring to Lemma 5.1, to add wj(s̄m) = c′nm,13, while stable s̄m−1 leads
to stable s̄m, and φ(sm−1,i) = γ(gi) to φ(sm,i) = γ(gi) and wi(s̄m−1) =
c′nm−1,13 to wi(s̄m) = c′nm,13 for all i < m− n.

�

8. Remarks

Reducing (Restricted) Word Problems for groups to such for mod-
ular lattices follows the same scheme in the finite and in the infinite
case. Recall from Subsection 5.1 that with any 4 frame in a modular
lattice one has the associated von Neumann coordinate ring R(Φ) with
subgroup R∗(Φ) of units, all defined in terms of the frame. Now, with
a group presentation (Π, ḡ) associate the lattice presentation λ(Π, ḡ)
obtained from the 4-frame Φ by adding the generator symbol gi for
each gi, the relations a1gi = a⊥, a1 + gi = a1 + a2, and the relations
wi(ḡ) = c13 where wi(ḡ) = e is a relation of (Π, ḡ).

Now, if w(ḡ) = e is a consequence of (Π, ḡ) for (finite) groups, then
w(ḡ) = c13 is a consequence of λ(Π, ḡ) for (finite) modular lattices L,
since R∗(Φ, L) is a (finite) group for any L.

On the other hand, if (G, h̄) is a model of (Π, ḡ) such that w(h̄) 6=
e (and G finite), then a (finite) model (L,Φ, h̄) with w(h̄) 6= c13 is
obtained choosing a (finite) vector space FV of dimF V = 4|G|; then
the lattice L of R-submodules of R4, R the group ring F [G], embeds
into the lattice L(FV ) of subspaces; moreover, the canonical 4-frame Φ
of L together with the R(e1−hie3) ∈ R∗(Φ) provide the required model
of λ(Π, ḡ) such that w(ḡ) 6= c13. In particular, the model embeds into
the subspace lattice L(FV ). Consequently, the relevant class of models
consists of sublattices of L(FV ) where dimF V is infinite respectively
of L(FdVd) where dimFd Vd →∞.
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With a simple modification one can restrict the number of lattice
generators to 5: For any n one has n + 3-frames equivalent within
modular lattices to a presentation in 4-generators [8, Satz 4.1] and
with g =

∑n
j=1 π3,j+3(gj) one obtains gj = πj+3,3(g · (a1 + aj+3)) for

j = 1, . . . , n to replace ḡ equivalently by g and to proceed with the
4-frame given by ai, cij where i, j ≤ 4.

For reduction to identities, the scheme is modified as described in
Subsection 2.4. In order to associate with group generators lattice
terms which allow to force group relations within the lattice, several
frames are combined via some kind of glueing. This leads to models
which are non-Arguesian lattices and, in particular, do not embed into
lattices of normal subgroups.

In all examples, discussed, one has a certain set Σ of quasi-identities
in the language of groups and for each β ∈ Σ an associated quasi-
identity λ(β) in the language of lattices and a class S of (finite) modular
lattices, the class of “models”, such that the following hold.

• If β holds for all (finite) groups then λ(β) holds for all (finite)
modular lattices.
• If β fails for some (finite) group then λ(β) fails for some “model”

lattice in S.

Thus, if Σ is undecidable for the class of (finite) groups, then the set
of λ(β) valid in all (finite) modular lattices and the set of λ(β) failing
in some lattice in S are recursively inseparable. In other words, the
undecidability results extend to all classes of (finite) modular lattices
containing the relevant class of models.

Observe that the number of generators in Slobodkoi’s Theorem is
3m+61 where m is the minimum number of states of a two tape Minsky
machine computing some partial recursive function with non-recursive
domain.

Problem 8.1. What is the minimal N such that the N-variable equa-
tional theory of finite modular lattices is undecidable.

Since skew (n,m)-frames can be generated by 8 elements, the follow-
ing could be of use.

Problem 8.2. Can one find n − m stable elements in the modular
lattice freely generated by a skew (n,m)-frame of characteristic p× p?
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Figure 5. Reduction of ∆(2)
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Figure 6. 2-tower of 3-frames
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Figure 8. 2-tower of skew (3, 2)-frames


