ON THE EQUATIONAL THEORY OF FINITE MODULAR LATTICES

CHRISTIAN HERRMANN

Abstract

It is shown that there is N such that there is no algorithm to decide for identities in at most N variables validity in the class of finite modular lattices.

1. Introduction

Since Dedekind's early result on modular lattices with 3 generators, calculations in modular lattices have served to reveal structure, also in geometric or algebraic context, to mention work e.g. of von Neumann and Thrall. Though, as shown by Hutchinson [13] and Lipshitz [19], the Restricted Word Problem for modular lattices is unsolvable (5 generators suffice) and so is the Triviality Problem. These results remain valid for any class of modular lattices containing the subspace lattices of some infinite dimensional vector space. Applying von Neumann's coordinate rings associated with frames in modular lattices, the proof relies on interpreting a finitely presented group with unsolvable word problem cf. Section 8, below.

On the other hand, for many rings R, including all division rings and homomorphic images of \mathbb{Z}, the equational theory of the class of all submodules $L\left({ }_{R} M\right)$ is decidable [9]; a thorough analysis has been given by Gábor Czédli and George Hutchinson [14].

Again based on frames and the fact, shown by András Huhn [12], that frames freely generate projective modular lattices, Ralph Freese [6] proved unsolvability of the Word Problem for the modular lattice $F M(5)$ with 5 free generators. On the model side, he relied on results of Cohn and McIntyre capturing group presentations within skew fields and on a construction, due to Dilworth and Hall, obtaining a modular lattice matching an upper section of one with a lower section of the other - here applied to height 2 intervals in subspace lattices of 4 -dimensional vector spaces. On the syntactic side, this structure is reflected in a sublattice of $F M(5)$, by a method to be called Freese's

[^0]technique: To frames (as part of presentations) with additional relations from given ones by "reduction" (mimicking subquotients of a module), to obtain a sublattice with enough structure, and to continue with elements (built from integers in a coordinate ring) having a property (called "stability" in [10]) which is inherited under reduction and allows to force group relations. Actually, Freese's proof associates a projective modular lattice with any finitely presented group and his result remains valid for all varieties of modular lattices containing all infinite modular lattices of height 6 .

The case of the free modular lattice with 4 generators has been done in [10] interpreting finitely presented 2 -generator groups G via a concept of "skew-frames of characteristic $p \times p$ ", providing 2 stable elements. Here, models are obtained by a glueing construction involving a lattice ordered system of components given as lattices of submodules of free $(\mathbb{Z} / p \mathbb{Z}) G$-modules.

The result crucial for the present note is the following.
Theorem 1.1. Slobodskoi [20]. The Restricted Word Problem for the class of finite groups is unsolvable. That is, there is a list $\bar{g}=$ $\left(g_{1}, \ldots, g_{n}\right)$ of generator symbols and a finite set of relations $\rho_{i}(\bar{g})$ in the language of groups such that there is no algorithm to decide, for any words $w(\bar{g})$, whether $w(\bar{a})=e$ for all finite groups G and all \bar{a} in G satisfying the relations $\rho_{i}(\bar{a})$ for all i.

Kharlampovich [15] proved the analogue for finite nilpotent groups, even more restricted classes of finite groups have been dealt with in [17]. A concise review of Slobodkoi's result has been given in [2, Section 2]. For a detailed analysis see [16, Section 7.4].

A rather immediate consequence of Thm. 1.1 is that the Restricted Word Problem is unsolvable for any class of finite modular lattices containing all subspace lattices of finite vector spaces cf Section 8. The same applies to the Triviality Problem [11], based on the unsolvability for the class of finite groups, proved by Bridson and Wilton [2].
Theorem 1.2. With n from Slobodkoi's result, the set of identities in $n+6$ variables, valid in all finite modular lattices, is non-recursive.

Thm 1.2 adapts to all classes of finite modular lattices containing the particular ones constructed in Thm. 6.3 from groups in a class with unsolvable restricted word problem.

In a recent related result, Kühne and Yashfe [18] show that there is no algorithm to decide, for any finite geometric lattice L with dimension function δ, whether there is a join embedding ε of L into the subspace lattice of some vector space (over fields from any specified
class) such that, for some constant $c, \operatorname{dim} \varepsilon(x)=c \cdot \delta(x)$ for all $x \in L$.
Concerning the proof of Thm. 1.2, on the model side, the construction of [10] is extended combining n skew frames (into a "tower") to deal with n group generators (Section 6). On the formal side, for convenience, we first capture towers by presentations projective within modular lattices (Section 3). Reductions of towers and stable elements are discussed in Section 4, coordinates and Freese's method of forcing group relations in Section 5. Finally, in Section 7 reduction is used to turn each skew frame of a tower, one at a time, into one of characteristic $p \times p$ and to obtain the associated stable element. Stable elements associated with other skew frames will be transformed (thanks to Ralph Freese) into stable elements, again, and it does not matter that characteristic $p \times p$ is (supposedly) lost. For easy reference, a description of the (well known) general method is given in Section 2.

2. Presentations and Reduction to identities

2.1. Presentations. Given a similarity type of algebraic structures, we fix a variety \mathcal{T} with solvable word problem for free algebras $F \mathcal{T}(\bar{x})$ in free generators $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$, called variables. Elements $t(\bar{x})$ will be called terms. For binary operator symbols, say + , we write $s+\bar{t}$ to denote the list $\left(s+t_{1}, \ldots, s+t_{n}\right)$.

Due to the solvability of the word problem there is an algorithm to decide, for any terms $t(\bar{x}), s(\bar{x})$ in the absolutely free algebra, whether the identity $t(\bar{x})=s(\bar{x})$ is valid in \mathcal{T}, i.e. whether the terms denote the same element of $F \mathcal{T}(\bar{x})$. This applies also to expansions by new constants.

To simplify notation, a list $\left(t_{1}(\bar{x}), \ldots, t_{n}(\bar{x})\right)$ is also written as $\bar{t}(\bar{x})$ and $\left.\bar{t}(\bar{x})\right|_{m}$ stands for $\left(t_{1}(\bar{x}), \ldots t_{m}(\bar{x})\right)$ where $m \leq n$. Also, we write $\bar{t}(\bar{u}(\bar{y}))=\bar{t}\left(u_{1}(\bar{y}), \ldots, u_{n}(\bar{y})\right)$ and the like.

Given a list \bar{c} of (pairwise distinct) new constants, called generator symbols, a relation $\rho(\bar{c})$ is an expression $t(\bar{c})=s(\bar{c})$ where $t(\bar{x})$ and $s(\bar{x})$ are terms. A (finite) presentation Π (also written as (Π, \bar{c})) is then given by \bar{c} and a finite set of relations $\rho(\bar{c})$. Constant (i.e. variable free) terms in the language expanded by \bar{c} are also referred to as "terms over П".

A relation $\rho(\bar{c})$, as above, is satisfied by $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$ in $A \in \mathcal{T}$ if $t(\bar{a})=s(\bar{a})$, we write $A \models \rho(\bar{a}) .(A, \bar{a})$ is a model of Π, written as $A \models \Pi$, if all relations of Π are satisfied in A. Par abuse de language we also say that \bar{a} is a Π in A and we use \bar{c} to denote \bar{a}.

In the sequel, let $\mathcal{A} \subseteq \mathcal{T}$ denote a class of algebraic structures closed under subalgebras. We say that (A, \bar{a}) is in \mathcal{A} if $A \in \mathcal{A}$. A relation $\rho(\bar{c})$ is a consequence of Π in \mathcal{A}, also implied by Π in \mathcal{A}, if $A \models \rho(\bar{a})$ for all models (A, \bar{a}) of Π in \mathcal{A}. The Restricted Word Problem for \mathcal{A} is unsolvable if there is a presentation (Π, \bar{c}) such there is no algorithm to decide, for any relation $\rho(\bar{c})$, whether $\rho(\bar{c})$ is a consequence of (Π, \bar{c}) within \mathcal{A}.
2.2. Transformations and strengthening. A transformation within \mathcal{A} of Π to a presentation Ψ in generator symbols $\bar{d}=\left(d_{1}, \ldots, d_{m}\right)$ is given by a list of terms $u_{j}(\bar{x}), j=1, \ldots, m$, such that one has $\left(A,\left(u_{1}(\bar{a}), \ldots, u_{m}(\bar{a})\right)\right.$ a model of Ψ for each model (A, \bar{a}) of Π in \mathcal{A}. The composition with a further transformation Ψ to Φ, given by the $v_{k}(\bar{y})$, is the transformation obtained by the terms $v_{k}\left(u_{1}(\bar{x}), \ldots, u_{m}(\bar{x})\right)$. Thus, one obtains transformations by iterated composition. The presentations Π and Ψ are equivalent within \mathcal{A} if, in the above, one has $\Phi=\Pi$ and $A \models \bar{v}(\bar{u}(\bar{a}))=\bar{a}$, and $B \models \bar{u}(\bar{v}(\bar{b}))=\bar{b}$ for all models (A, \bar{a}) of Π and (B, \bar{b}) of Ψ. In particular, if Ψ is obtained from Φ adding generators (that is, $m>n$ and $c_{i}=d_{i}$ for $i \leq n$) and relations then Π and Ψ are equivalent within \mathcal{A} if and only if there is a transformation of Φ to Ψ within \mathcal{A} such that $u_{j}=x_{j}$ for $j \leq n$.

Consider presentations Π and Π^{+}in the same generator symbols $\bar{c}=$ $\left(c_{1}, \ldots, c_{n}\right)$. A transformation from Π to Π^{+}within \mathcal{A} given by terms $u_{i}(\bar{x}), i=1, \ldots, n$ (also written as $u_{c_{i}}(\bar{x})$ with $x_{i}=x_{c_{i}}$) strengthens Π to Π^{+}within \mathcal{A} if the following hold.
(1) The relations of Π are consequences of Π^{+}within \mathcal{A}.
(2) $u_{i}(\bar{a})=a_{i}$ for $i=1, \ldots, n$ and all models (A, \bar{a}) of Π^{+}in \mathcal{A}.

That is, from any model (A, \bar{a}) of Π in \mathcal{A} one obtains the model $(A, \bar{u}(\bar{a}))$ of Π^{+}while models of Π^{+}remain unchanged.

Considering a model (A, \bar{a}) of Π, it is common use to write also c_{i} in place of a_{i}, that is, the generator symbol c_{i} denotes the element a_{i} of A. In view of this, we use the notation $c_{i}:=u_{i}(\bar{c})$ to indicate the terms $u_{i}(\bar{x})$ defining the strengthening of Π to Π^{+}- without mentioning $c_{i}:=c_{i}$ if $u_{i}(\bar{x})=x_{i}$. In particular this is done if we construct a sequence of strengthenings - which, of course, provides a strengthening of the original presentation.
2.3. Projective presentations. A presentation Π is projective within \mathcal{A} if there are (witnessing) terms $t_{1}^{\Pi}(\bar{x}), \ldots, t_{n}^{\Pi}(\bar{x})$ such that the following hold for all $A \in \mathcal{A}$ and \bar{a} in A.
(1) $\left(A,\left(t_{1}^{\Pi}(\bar{a}), \ldots, t_{n}^{\Pi}(\bar{a})\right) \models \Pi\right.$.
(2) If $(A, \bar{a}) \models \Pi$ then $t_{i}^{\Pi}(\bar{a})=a_{i}$ for all i.

Then, of course, Π is projective within any $\mathcal{B} \subseteq \mathcal{A}$.
Fact 2.1. If Π_{1} and Π_{2} are projective within \mathcal{A} then so is their disjoint union, e.g. if Π_{2} introduces additional generators, but no relations.

Fact 2.2. If Π is strengthened to Π^{+}within \mathcal{A} then Π^{+}is projective in \mathcal{A} if so is Π.
Fact 2.3. If Π is projective in \mathcal{A}, with witnessing terms $t_{i}^{\Pi}(\bar{x})$, then the identity

$$
t\left(t_{1}^{\Pi}(\bar{x}), \ldots, t_{n}^{\Pi}(\bar{x})\right)=s\left(t_{1}^{\Pi}(\bar{x}), \ldots, t_{n}^{\Pi}(\bar{x})\right)
$$

is valid in \mathcal{A} if and only if $t(\bar{a})=s(\bar{a})$ for all models (A, \bar{a}) of Π in \mathcal{A}.
Now, assume that \mathcal{A} is a variety, i.e. an equationally definable class. Then for each presentation (Π, \bar{c}) one has "the" algebra $F \mathcal{A}(\Pi, \bar{c})$ in \mathcal{A} freely generated by \bar{c} under the relations Π; here, \bar{c} also denotes its image under the canonical homomorphism. This algebra is projective within \mathcal{A} if and only if so is the presentation (Π, \bar{c}).

Strengthening the presentation (Π, \bar{c}) to Π^{+}with additional relation $s(\bar{c})=t(\bar{c})$ then means to provide \bar{b} in $F \mathcal{A}(\Pi, \bar{c})$ such that $s(\bar{b})=t(\bar{b})$ and $\phi(\bar{b})=\phi(\bar{c})$ for all $A \in \mathcal{A}$ and homomorphisms $\phi: F \mathcal{A}(\Pi, \bar{c}) \rightarrow A$ such that $s(\phi(\bar{c}))=t(\phi(\bar{c}))$.
2.4. Reducing quasi-identities to identities. Given a signature, an identity or equation is a sentence of the form $\forall \bar{x} . t(\bar{x})=s(\bar{x})$, a quasi-identity a sentence of the form $\forall \bar{y} . \alpha(\bar{y}) \Rightarrow t(\bar{y})=s(\bar{y})$ with antecedent $\alpha(\bar{y}) \equiv \bigwedge_{i} t_{i}(\bar{y})=s_{i}(\bar{y})$; here $t(\bar{x}), s(\bar{x}), t_{i}(\bar{y})$, and $s_{i}(\bar{y})$ are terms. Observe that, replacing variables by new constants, α is turned into a presentation.

Consider classes \mathcal{M}_{0} and \mathcal{G}_{0} of algebraic structures in (not necessarily) distinct signature, both closed under subalgebras. The task is to reduce quasi-identities for \mathcal{G}_{0} to equations for \mathcal{M}_{0}; that is, given a set Λ of quasi-identities in the language of \mathcal{G}_{0} to construct an algorithm associating with each $\beta \in \Lambda$ an equation β^{*} in the language of \mathcal{M}_{0} such that β holds in \mathcal{G}_{0} if and only if β^{*} holds in \mathcal{M}_{0}.

In the sequel we describe the general structure of such algorithm to be applied to the case where \mathcal{G}_{0} is the class of all finite groups, \mathcal{M}_{0} the class of all finite modular lattices. Fix a set Λ_{0} of formulas $\alpha(\bar{y}) \equiv \bigwedge_{i=1}^{h} w_{i}(\bar{y})=v_{i}(\bar{y}), \bar{y}=\left(y_{1}, \ldots, y_{n_{\alpha}}\right)$, in the language of \mathcal{G}_{0}.

Hypothesis: There is an algorithm which constructs the following in the language of \mathcal{M}_{0}.
(a) For any given $\alpha \in \Lambda_{0}$ a presentation (Π, \bar{c}), where $\bar{c}=\left(c_{1}, \ldots, c_{N}\right)$, and terms $\bar{u}=\left(u_{1}, \ldots, u_{N}\right)$ with $N:=N_{\alpha} \geq n:=n_{\alpha}$
(b) For each r-ary operation symbol f of \mathcal{G}_{0}, a term $f^{\#}(\bar{z}, \bar{x}), \bar{z}=$ $\left(z_{1}, \ldots, z_{r}\right)$ where $\bar{x}=\left(x_{1}, \ldots, x_{N}\right)$.
Now, for a formula $\gamma(\bar{y})$ in the language of \mathcal{G}_{0}, the translation according to (b) into a formula in the language of \mathcal{M}_{0} is denoted by $\gamma^{\#}(\bar{y}, \bar{x})$ and the following are required.
(i) (Π, \bar{c}) is projective for \mathcal{M}_{0} with witnessing terms \bar{t}.
(ii) If (L, \bar{a}) is a model of (Π, \bar{c}) in \mathcal{M}_{0} then so is $(L, \bar{u}(\bar{a}))$.
(iii) For any $\alpha \in \Lambda_{0},(\Pi, \bar{c})$ implies $\left.\alpha^{\#}\left(\left.\bar{u}(\bar{c})\right|_{n}\right), \bar{u}(\bar{c})\right)$ in \mathcal{M}_{0}.
(iv) For any model (L, \bar{a}) of (Π, \bar{c}) with $L \in \mathcal{M}_{0}$, the algebra $G=$ $G\left(L,\left.\bar{u}\right|_{n}(\bar{a})\right)$ generated by $\left.\bar{u}\right|_{n}(\bar{a})$ under the operations $\bar{b} \mapsto$ $f^{\#}\left(\bar{b},\left.\bar{u}\right|_{n}(\bar{a})\right), f$ an operation symbol of \mathcal{G}_{0}, is a member of \mathcal{G}_{0} and $\left(G,\left.\bar{u}\right|_{n}(\bar{a})\right) \models \alpha\left(\left.\bar{u}\right|_{n}(\bar{a})\right)$.
(v) For any $\alpha \in \Lambda_{0}$ and $G \in \mathcal{G}_{0}$, with generators $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ such that $G \models \alpha(\bar{g})$, there is a model $(L(G, \bar{g}), \bar{a})$ of (Π, \bar{c}) with $L(G, \bar{g}) \in \mathcal{M}_{0}$ and $\bar{u}(\bar{a})=\bar{a}$ and, moreover, such that there is an embedding $\omega: G \rightarrow G(L(G, \bar{g}), \bar{a})$ with $\omega\left(g_{i}\right)=a_{i}$ for $i=1, \ldots, N$.

Lemma 2.4. Given an algorithm satisfying the above hypothesis, there is an algorithm associating with any quasi-identity β, with antecedent $\alpha \in \Lambda_{0}$ in the language of \mathcal{G}_{0}, an equation β^{*} in the language of \mathcal{M}_{0} such that β holds in \mathcal{G}_{0} if and only if β^{*} holds in \mathcal{M}_{0}.

In particular, if a presentation Ψ in n generators in the language of \mathcal{G}_{0} is given, then the restricted word problem for Ψ within \mathcal{G}_{0} reduces to the decision problem for N-variable identities within \mathcal{M}_{0} where N is the number of generators in the presentation (Π, \bar{c}), required in (a) above.

Proof. By (b), there is an algorithm associating, uniformly for all n, N $(n \leq N)$, with any term $w(\bar{y})$ in the language of \mathcal{G}_{0} a term $w^{\#}(\bar{y}, \bar{x})$ in the language of \mathcal{M}_{0} such that $y_{i}^{\#}(\bar{y}, \bar{x})=y_{i}$ and

$$
\left(f\left(w_{1}(\bar{y}), \ldots, w_{n}(\bar{y})\right)\right)^{\#}(\bar{y}, \bar{x})=f^{\#}\left(w_{1}^{\#}(\bar{y}, \bar{x}), \ldots, w_{n}^{\#}(\bar{y}, \bar{x})\right)
$$

Now, given $\beta \equiv \forall y .(\alpha(\bar{y}) \Rightarrow w(\bar{y})=v(\bar{y}))$ where $\alpha \in \Lambda_{0}$, let β^{*} denote the identity $\forall \bar{x}$. $\gamma(\bar{x})$ where $\gamma(\bar{x})$ denotes

$$
\begin{aligned}
& w^{\#}\left(u_{1}(\bar{t}(\bar{x})), \ldots, u_{n}(\bar{t}(\bar{x})), \bar{u}(\bar{t}(\bar{x}))\right)= \\
& =v^{\#}\left(u_{1}(\bar{t}(\bar{x})), \ldots, u_{n}(\bar{t}(\bar{x})), \bar{u}(\bar{t}(\bar{x}))\right)
\end{aligned}
$$

with $u_{i}(\bar{x})$ according to (a). Assume that β^{*} holds in \mathcal{M}_{0} and consider $G \in \mathcal{G}_{0}$ and \bar{g} in G such that $G \models \alpha(\bar{g})$. Given $(L(G, \bar{g}), \bar{a})$ according to (v), one has $u_{i}(\bar{a})=a_{i}$ for all i whence, due to validity of β^{*},

$$
\left.\omega(w(\bar{g}))=w^{\#}\left(\left.\bar{a}\right|_{n}, \bar{a}\right)=w^{\#}\left(\left.\bar{u}(\bar{a})\right|_{n}\right), \bar{u}(\bar{a})\right)=
$$

$$
\left.=v^{\#}\left(\left.\bar{u}(\bar{a})\right|_{n}, \bar{u}(\bar{a})\right)=v^{\#}\left(\left.\bar{a}\right|_{n}, \bar{a}\right)\right)=\omega(v(\bar{g}))
$$

and $w(\bar{g})=v(\bar{g})$ follows, verifying β for \mathcal{G}_{0}.
Conversely, assume that β holds for all G in \mathcal{G}_{0} and consider any $L \in \mathcal{M}_{0}$ and $\bar{a}=\left(a_{1}, \ldots, a_{N}\right)$ in L. That $(L, \bar{u}(\bar{t}(\bar{a})))$ is a model of (Π, \bar{c}) is obtained combining (i) and (ii) and by (iii) it follows that $L \models \alpha^{\#}\left(\left.\bar{u}(\bar{t}(\bar{a}))\right|_{n}, \bar{u}(\bar{t}(\bar{a}))\right)$. Thus, by (iv) $G:=G\left(L,\left.\bar{u}(\bar{t}(\bar{a}))\right|_{n}\right)$ is in \mathcal{G}_{0} and $\alpha\left(\left.\bar{u}(\bar{t}(\bar{a}))\right|_{n}\right)$ holds in G. Now, the quasi-identity β being valid in \mathcal{G}_{0}, it follows $G \models \gamma\left(\left.\bar{u}(\bar{t}(\bar{a}))\right|_{n}, \bar{u}(\bar{t}(\bar{a}))\right)$; that is, the identity β^{*} holds in L for the substitution \bar{a}..

3. Some projective modular lattice presentations

3.1. Terms and lattices. For concepts of lattice theory we refer to Birkhoff [1], for modular lattices also von Neumann [21]. For better readability, joins and meets will be written as $x+y$ and $x \cdot y=x y$, assuming associativity, commutativity. and idempotency for both operations. That is, the term algebra $F \mathcal{T}(\bar{x})$ is the free algebra in the variety \mathcal{T} of algebras $(A,+, \cdot)$ where $(A,+)$ and (A, \cdot) are commutative idempotent monoids. Thus, the word problem for free algebras in \mathcal{T} has a (simple) solution and we may use expressions $\sum_{i} a_{i}$ and $\prod_{i} a_{i}$ - to be read as $\left(\sum_{i} a_{i}\right)$ and $\left(\prod_{i} a_{i}\right)$, respectively. For convenience, we also use the rule that $s \cdot t+u=s t+u$ reads as $(s t)+u$.

A lattice L is a member of \mathcal{T} which satisfies the absorption laws

$$
x(x+y)=y \text { and } x+x y=x .
$$

For lattices, $x \leq y \Leftrightarrow x=x y$ (we also write $y \geq x$) defines a partial order \leq and one has $a \leq b$ if and only if $a=a+b$. With respect to this partial order, $a+b$ is the supremum, $a b$ the infimum of a, b. If L has a smallest resp. greatest element these will be denoted by \perp^{L} and T^{L}, respectively. A set $\left\{a_{1}, \ldots, a_{n}\right\}$ in L such that $\sum_{i} a_{i}=\top^{L}$ and $\prod_{i} a_{i}=\perp^{L}$ will be called spanning in L. In particular, this applies if L is generated by a_{1}, \ldots, a_{n}. For $a \leq b$ in L, the interval $[a, b]=\{c \in$ $L \mid a \leq c \leq b]$ is a sublattice of L; an ideal of L is. sublattice I such that $b \in I$ for any $b \leq a \in I$. The word problem for free lattices is well known to be solvable, but for simplicity we prefer to consider terms in \mathcal{T}.

A chain C_{n} of length n is a presentation with generators $d_{i}, i=$ $0, \ldots, n$, and relations $d_{i} \leq d_{i+1}, i<n$. Obviously, chains are projective within the class of all lattices.
3.2. Modular lattices. A lattice is modular if it satisfies the identity $x(y+x z)=x y+x z$, equivalently, if $a(b+c)=a b+c$ for all $c \leq a$. The class of all modular lattices is denoted by \mathcal{M}. Projectivity of
presentations will always refer to \mathcal{M}. Examples of modular lattice are the lattices $L\left({ }_{R} M\right)$ of all submodules of R-modules, with operations + and \cap.

Fact 3.1. In a modular lattice, $x \mapsto x+b$ is an isomorphism of $[a b, a]$ onto $[b, a+b]$ with inverse $y \mapsto y a$.

Accordingly, we define $\bar{x} \nearrow \bar{y}$ to stand for the formula

$$
\bigwedge_{i=1}^{n}\left(y_{i}=x_{i}+\prod_{j=1}^{n} y_{j} \wedge x_{i}=y_{i} \cdot \sum_{j=1}^{n} x_{j}\right) .
$$

Observe that $\bar{x} \nearrow \bar{y}$ and $\bar{y} \nearrow \bar{z}$ jointly imply $\bar{x} \nearrow \bar{z}$. Also observe that $\bar{x} \nearrow \bar{y}, \bar{x} \nearrow \bar{z}$ and $\bar{y} \leq \bar{z}$ jointly imply $\bar{y} \nearrow \bar{z}$. Writing $\bar{x}^{1} \nearrow \ldots \nearrow \bar{x}^{m}$ we require $\bar{x}^{i} \nearrow \bar{x}^{j}$ for all $i<j \leq m$.

Call elements a_{1}, \ldots, a_{n} of a modular lattices relatively independent (over b) if $b=a_{k} \cdot \sum_{i<k} a_{i}$ for all $1<k \leq n$. This implies that any permutation of a_{1}, \ldots, a_{n} is independent over b, too, and that the a_{i} generate a boolean sublattice B with smallest element b and the $a_{i}=b$ or atoms of B.
Fact 3.2. In a modular lattice, if u, v, w are relatively independent over t, then $(x, y, z) \mapsto x+y+z$ defines an embedding of $[t, u] \times[t, v] \times[t, w]$ into $[t, u+v+w]$. In particular, for $t \leq u^{\prime} \leq u^{\prime \prime} \leq u, t \leq v^{\prime} \leq$ $v^{\prime \prime} \leq v$, and $t \leq w^{\prime} \leq w^{\prime \prime} \leq w$ the sublattice generated by these 3 chains is isomorphic to the direct product of these chains. and the above embedding restricts to isomorphisms $x \mapsto x+v^{\prime}$ of $\left[u^{\prime}+w^{\prime}, u^{\prime \prime}+w^{\prime \prime}\right]$ onto $\left[u^{\prime}+v^{\prime}+w^{\prime}, u^{\prime \prime}+v^{\prime}+w^{\prime \prime}\right]$ and $y \mapsto y+u^{\prime}$ of $\left[v^{\prime}+w^{\prime}, v^{\prime \prime}+w^{\prime \prime}\right]$ onto $\left[u^{\prime}+v^{\prime}+w^{\prime}, u^{\prime}+v^{\prime \prime}+w^{\prime \prime}\right]$, respectively.

See Fig. 1. For the proof observe, that one can assume $t=0$ and that the case $w=0$ is well known. The analoguous result holds for any number of relatively independent elements.
3.3. Products of presentations. Given presentations $\left(\Pi^{j},\left(\perp, \bar{c}^{j}\right)\right)$, where $\bar{c}^{j}=\left(c_{1}^{j}, \ldots, c_{n_{j}}^{j}\right)$ for $j=1,2$ with pairwise distinct c_{i}^{j} and, for $j=1,2$, relations in Π^{j} implying $\perp \leq c_{i}^{j}$ for all i, the product $\left(\Pi^{1},\left(\perp, \bar{c}^{1}\right)\right) \times\left(\Pi^{2},\left(\perp, \bar{c}^{2}\right)\right)$ is the presentation $(\Pi,(\perp, \bar{c}))$ with generator symbols

$$
\perp \text { and } \bar{c}=\left(c_{1}^{1}, \ldots, c_{n_{1}}^{1}, c_{1}^{2}, \ldots c_{n_{2}}^{2}\right)
$$

and, in addition to the relations of the $\left(\Pi^{j},\left(\perp, \bar{c}^{j}\right)\right)$, the relations

$$
\sum_{i=1}^{n_{1}} c_{i}^{1} \cdot \sum_{k=1}^{n_{2}} c_{k}^{2}=\perp
$$

Fact 3.2 implies the following well known fact.
Fact 3.3. Within \mathcal{M}, products of projective presentations are projective. Moreover, given models $\left(L_{j},\left(a_{0}^{j}, \bar{a}^{j}\right)\right)$ of $\left(\Pi^{j},\left(\perp, \bar{c}^{j}\right)\right)$ in \mathcal{M} one has $L_{1} \times L_{2}$ a model of the product with generators mapped to $\left(a_{i}^{1}, a_{0}^{2}\right)$ and $\left(a_{0}^{1}, a_{k}^{2}\right)$, respectively; moreover, any model of the product is isomorphic to such.
3.4. Frames. Frames have been introduced by von Neumann [21] for coordinatizing complemented modular lattices. Given n independent generators e_{i} of an R-module ${ }_{R} M$, the canonical n-frame in $L\left({ }_{R} M\right)$ consists of $a_{i}=R e_{i}, c_{1 j}=R\left(e_{1}-e_{j}\right)$, and $a_{\perp}=\{0\}$. This is mimicked by the following presentation.

An n-frame Φ is a lattice presentation with generators $a_{\perp}, a_{1}, \ldots, a_{n}$, $c_{1 j}=c_{j 1}(2 \leq j \leq n)$ and relations

$$
\begin{array}{rlll}
\text { (1) } \begin{aligned}
a_{\perp} & =a_{j}\left(\sum_{i=1}^{j-1} a_{i}\right) \\
\text { (2) } & a_{\perp}
\end{aligned}=a_{1} c_{1 j} & =a_{j} c_{1 j} \\
\text { (3) } a_{1}+a_{j} & =a_{1}+c_{1 j} & =a_{j}+c_{1 j}
\end{array}
$$

where $2 \leq j \leq n$. See Fig. 2
An equivalent presentation is obtained by replacing a_{\perp} by $a_{1} a_{2}$. A model (in \mathcal{M}) of (an) n-frame is referred to as "an n-frame in a modular lattice"; otherwise, speaking of "an n-frame" we mean a presentation as above, possibly with renamed generators.

We define $a_{\top}=\sum_{i=1}^{n} a_{i}$ and write also $a^{\top}=a_{\top}^{\Phi}=\top^{\Phi}, a_{i}=a_{i}^{\Phi}$, $c_{i j}=c_{i j}^{\Phi}$, and $a_{\perp}=a_{\perp}^{\Phi}=\perp^{\Phi}$. The list of generators with indices not involving k is written as $\Phi_{\neq k}$. Observe that Φ implies, within \mathcal{M}, the relations of n-1-frames for $\Phi_{\neq k}$ and $a_{k}+\Phi_{\neq k}$ and that

$$
\Phi_{\neq k} \nearrow a_{k}+\Phi_{\neq k} .
$$

Also observe, that the concept of n-frame can be defined, recursively: start with that of 2 -frame, as defined above; now, given the concept of n-frame Φ, obtain the $n+1$-frame Φ^{+}adding to the generators and relations of Φ the generators a_{n+1} and $c_{1, n+1}$ and relations (2) and (3) for $j=n+1$ - renaming a_{\perp}^{Φ} into $a_{\perp}^{\Phi^{+}}$.

The following is a special case of Dedekind's description of 3-generated modular lattices.

Fact 3.4. The modular lattice freely generated by a, a^{\prime}, c such that $a a^{\prime} \leq$ $c \leq a+a^{\prime}$ has diagram given in Fig. 3. In particular, with $b=a c$ and $d=a\left(a^{\prime}+c\right)$ one has a 2-frame $b+a^{\prime} c, d+a^{\prime} c, a^{\prime}(a+c), c$ and $b . d \nearrow b+a^{\prime} c, d+a^{\prime} c$.
3.5. Reduction. Given an n-frame Φ and variables x, y, put

$$
a_{\perp}(x, y) \equiv x+\sum_{j>1} a_{j}\left(x+c_{1 j}\right) \text { and } a_{\top}(x, y) \equiv y+\sum_{j>1} a_{j}\left(y+c_{1 j}\right)
$$

and introduce for each remaining generator symbol c in Φ the term

$$
\hat{c}(x, y) \equiv c \cdot a_{\top}(x, y)+a_{\perp}(x, y) .
$$

Observe that for all models of Φ in a modular lattice L and b, d in L with $a_{\perp} \leq b \leq d \leq a_{1}$ one has the identity $\hat{c}(b, d)=\left(c+a_{\perp}(b, d)\right) \cdot a_{\top}(b, d)$. Let $\Phi(x, y)=\Phi_{x}^{y}$ denote the list of terms $\hat{c}(x, y), c$ a generator symbol of Φ; this is called the reduction setup for n-frames.

If Φ is part of a presentation Π and b, d are terms over Π then Φ_{d}^{b} is obtained substituting b, d for $x, y ; \Phi_{d}^{b}$ is called the reduction of Φ via b, d. We put $\Phi^{b}=\Phi_{a_{\perp}}^{b}$ and $\Phi_{d}=\Phi_{d}^{a_{1}}$.

If $B \subseteq D$ are left-ideals of the ring R, then the reduction of the canonical n-frame of $L\left({ }_{R} R^{n}\right)$ by $b=B e_{1} \leq d=D e_{1}$ is given by

$$
a_{\perp}^{\prime}=\sum_{i=1}^{n} B e_{i}, a_{i}^{\prime}=a_{\perp}^{\prime}+D e_{i}, c_{1 j}^{\prime}=a_{\perp}^{\prime}+D\left(e_{1}-e_{j}\right), a_{\top}^{\prime}=\sum_{i=1}^{n} D e_{i}
$$

See [5, Lemma 1.1] and Fig. 4 for the following.
Lemma 3.5. For any n-frame Φ and $a_{\perp} \leq b \leq d \leq a_{1}$ in a modular lattice, L, one has the following
(1) Φ_{d}^{b} is an n-frame in L.
(2) $d, b \nearrow\left(a_{1}\right)^{\Phi_{d}^{b}},\left(a_{\perp}\right)^{\Phi_{d}^{b}} \nearrow \sum \Phi_{d}^{b}, \sum_{i \neq 1} a_{i}^{\Phi_{d}^{b}} \nearrow$

$$
\nearrow d+\sum_{i \neq 1} a_{i}, b+\sum_{i \neq 1} a_{i}
$$

(3) $a_{T}^{\Phi_{d}^{b}} \cdot \sum \Phi_{\neq 1}, a_{\perp}^{\Phi_{d}^{b}} \cdot \sum \Phi_{\neq 1} \nearrow\left(\Phi_{d}^{b}\right)_{\neq 1}, a_{\perp}^{\Phi_{d}^{b}}$.
(4) $\left(\Phi_{\neq k}\right)_{d}^{b} \nearrow\left(\Phi_{d}^{b}\right)_{\neq k} \nearrow\left(a_{k}\right)^{\Phi_{d}^{b}}+\left(\Phi_{d}^{b}\right)_{\neq k} \nearrow\left(a_{k}+\Phi_{\neq k}\right)_{a_{k}+d}^{a_{k}+b}$ for $k>1$..
(5) If $b=a_{\perp}$ and $d=a_{1}$ then $\Phi_{d}^{b}=\Phi$.
3.6. Towers of 2 -frames. An n-tower of 2 -frames is a presentation $\Delta(n)=\Delta(2, n)$ which is the disjoint union of 2 -frames $\left(\Phi^{k}, a_{\perp}^{k} \cdot a_{i}^{k}, c_{1 j}^{k}\right)$, $k=1, \ldots, n$, with the additional relations

$$
a_{\top}^{k}, a_{2}^{k} \nearrow a_{1}^{k+1}, a_{\perp}^{k+1} \text { for } 1 \leq k<n .
$$

It follows that $a_{2}^{n} a_{1}^{1}=a_{\perp}^{1}$ and $a_{2}^{n}+a_{1}^{1}=a_{\top}^{n}$. Referring to the reduction setups $\Phi^{k}(x, y)$ of the 2 -frames Φ^{k}, define the reduction setup $\Delta(n)(x, y)$ as the union of the $\Phi^{k}\left(x+a_{\perp}^{k}, y+a_{\perp}^{k}\right)$ and the reduction $\Delta(n)_{d}^{b}=$ $\Delta(n)(b, d)$. The following is due to Alan Day [3, Thm.5.1]
Lemma 3.6. (i) Within \mathcal{M}, n-towers of 2 -frames are projective.
(ii) $\operatorname{FM}(\Delta(n))$ is the disjoint union of 5 -element interval sublattices $\Phi^{k} \cup\left\{a_{\top}^{k}\right\}$.
(iii) $\operatorname{FM}(\Delta(n))$ is generated by the $n+2$-elements $a_{1}^{1}, a_{2}^{n}, c_{12}^{k}(1 \leq$ $k \leq n)$.
(iv) If $\Delta(n)$ is an n-tower of 2 -frames in a modular lattice L and if $a_{\perp}^{1} \leq b \leq d \leq a_{1}^{1}$ then $\Delta(n)_{d}^{b}$ is an n-tower of 2 -frames $a_{\perp}^{\prime k}, a_{1}^{\prime k}, a_{2}^{\prime k}, c_{12}^{\prime k}$ in L and with $u=a_{2}^{n} \geq u^{\prime \prime}=u a_{2}^{\prime n} \geq u^{\prime}=u a_{\perp}^{\prime 1}$ and $w=a_{1}^{1} \geq w^{\prime \prime}=d \geq w^{\prime}=b \geq a_{\perp}^{1}$ one has $u w=a_{\perp}^{1}$, $a_{\perp}^{\prime 1}=u^{\prime}+w^{\prime}$, and $a_{\top}^{\prime n}=u^{\prime \prime}+w^{\prime \prime}$. Moreover, if $d=a_{1}$ then $w^{\prime \prime}=w$ and $u^{\prime \prime}=u$. If, in addition, $b=a_{\perp}^{1}$ then $\Delta(n)_{d}^{b}=\Delta$.

Proof. (i)-(iii) are in [3]. (iv) follows from (1) and (2) of Lemma 3.5, readily. See Fig. 5.
3.7. Towers of 3 -frames. An n-tower of 3 -frames is a presentation $\Delta(3, n)$ consisting of the product of an n-tower $\Delta(n)$ of 2 -frames with the chain $a_{\perp}^{1} \leq a_{3}^{1}$ and an additional generator c_{13}^{1} such that $a_{\perp}^{1}, a_{1}^{1}, a_{3}^{1}, c_{13}^{1}$ is a 2 -frame Φ. In particular, by Fact $3.2 a_{2}^{n}\left(a_{1}^{1}+a_{3}^{1}\right)=a_{\perp}^{1}=\left(a_{1}^{1}+a_{2}^{1}\right) a_{3}^{1}$ whence Φ^{1} together with a_{3}^{1}, c_{13}^{1} forms a 3 -frame. See Fig. 6

Lemma 3.7. n-towers of 3 -frames are projective within \mathcal{M}.
Proof. By Facts 3.3, 2.1, and Lemma 3.6, the product of $\Delta(n)$ with the chain $a_{\perp}^{1} \leq a_{3}^{1}$ is projective within \mathcal{M} and strengthening with

$$
c_{13}^{1}:=\left(c_{13}^{1}+a_{\perp}^{1}\right)\left(a_{1}^{1}+a_{3}^{1}\right)
$$

yields the additional relations $a_{\perp}^{1} \leq c_{13}^{1} \leq a_{1}^{1}+a_{3}^{1}$. Now, in view of Fact 3.4 put

$$
\begin{gathered}
b=a_{1}^{1} c_{13}^{1} \text { and } d=a_{1}^{1}\left(c_{13}^{1}+a_{3}^{1}\right) \\
(*) \quad v=a_{3}^{1} \geq v^{\prime \prime}=a_{3}^{1}\left(a_{1}^{1}+c_{13}^{1}\right) \geq v^{\prime}=a_{3}^{1} c_{13}^{1} \geq a_{\perp}^{1}
\end{gathered}
$$

to obtain the 2 -frame $\Phi^{\prime}=\left(b+v^{\prime}, d+b+v^{\prime}, v^{\prime \prime}+b, c_{13}^{1}+b+v^{\prime}, d+v^{\prime \prime}\right)$. Now, together with the chains defined in (iv) of Lemma 3.6, apply Fact 3.2 to obtain the n-tower $v^{\prime}+\Delta(n)_{d}^{b}$ spanning $\left[u^{\prime}+w^{\prime}+v^{\prime}, u^{\prime \prime}+w^{\prime \prime}\right]$ and the 2 -frame $u^{\prime}+\Phi^{\prime}$ spanning $\left[u^{\prime}+w^{\prime}+v^{\prime}, w^{\prime \prime}+v^{\prime \prime}\right]$. This verifies the strengthening

$$
\Delta(n):=v^{\prime}+\Delta(n)_{d}^{b}, a_{3}^{1}:=u^{\prime}+w^{\prime}+v^{\prime}+a_{3}^{1}, c_{13}^{1}:=u^{\prime}+w^{\prime}+v^{\prime}+c_{13}^{1}
$$

and proves the lemma.
The reduction setup $\Delta(3, n)(x, y)$ is the union of $\Delta(n)(x, y)$ and $\Phi(x, y)$.

Corollary 3.8. (i) If $\Delta(3, n)$ is an n-tower of 3 -frames in a modular lattice L and if $b, d \in L$ such that $a_{\perp}^{1} \leq b \leq d \leq a_{1}^{1}$ then $\Delta(3, n)_{d}^{b}:=\Delta(3, n)(b, d)$ is also an n-tower of 3 -frames in L
and spans the interval $\left[u^{\prime}+w^{\prime}+v^{\prime}, u^{\prime \prime}+w^{\prime \prime}+v^{\prime \prime}\right]$ with the chains from (*) and (iv) of Lemma 3.6.
(ii) Redefining two of the chains into one, namely $u:=u+v \geq$ $u^{\prime \prime}:=u^{\prime \prime}+v^{\prime \prime} \geq u^{\prime}:=u^{\prime \prime}+v^{\prime \prime}$ one has that $\Delta(3, n)_{d}^{b}$ spans the interval $\left[u^{\prime}+w^{\prime}, u^{\prime \prime}+w^{\prime \prime}\right]$. Moreover, if $d=a_{1}^{1}$ then $w=w^{\prime \prime}$ and $u=u^{\prime \prime}$.
3.8. Towers of skew frames. A skew $(n+1, n)$-frame is the lattice presentation Ψ given by the product of an n-frame Φ with the chain $a_{\perp} \leq a_{n+1}^{\prime}$ and an additional generator $c_{1, n+1}^{\prime}$ such that the list of terms $a_{\perp}, b=a_{1}\left(a_{n+1}^{\prime}+c_{1, n+1}^{\prime}\right), a_{n+1}^{\prime}, c_{1, n+1}^{\prime}$ satisfies the relations of a 2 -frame. See Fig. 7.

An n-tower $\Omega(m, n)$ of skew ($m, m-1$)-frames is the presentation given as the product of an n-tower $\Delta(m-1, n)$ of $m-1$-frames with the chain $a_{\perp}^{1} \leq a_{m}^{\prime}$ and an additional generator $c_{1 m}^{\prime}$ subject to relations stating that $a_{\perp}^{1}, a_{1}^{1}\left(a_{4}^{\prime}+c_{1 m}^{\prime}\right), a_{m}^{\prime}, c_{1 m}^{\prime}$ is a 2 -frame. See Fig. 8. We put $\Omega(n)=\Omega(4, n)$ and speak of n-towers of skew frames.
Theorem 3.9. n-towers of skew frames can be defined in terms of $n+6$ generators and are projective within \mathcal{M}.
Proof. $n+2$ generators provide the n-tower of 2 -frames, 2 more the n tower of 3 -frames, and another 2 are used to turn this into an n-tower of skew frames.

Omitting the relations concerning c_{14}^{\prime}, projectivity within \mathcal{M} follows from Lemma 3.7 and Facts 3.3, 2.1. A first strengthening

$$
c_{14}^{\prime}:=\left(c_{1 m}^{\prime}+a_{\perp}^{1}\right)\left(a_{1}^{1}+a_{4}^{\prime}\right)
$$

adds the relations $a_{\perp}^{1} \leq c_{14}^{\prime} \leq a_{1}^{1}+a_{4}^{\prime}$. In view of Fact 3.4 put $b=a_{1}^{1} c_{14}^{\prime}$ and $v=v^{\prime \prime}=a_{4}^{\prime 1}\left(a_{1}^{1}+c_{14}^{\prime 1}\right) \geq v^{\prime}=a_{4}^{\prime 1} c_{4}^{\prime 1}$ and let M denote the interval [$\left.b+v^{\prime}, a_{1}^{1}+v^{\prime}\right]$ of the sublattice generated by $a_{1}^{1}, a_{4}^{\prime 1}, c_{14}^{\prime 1}$. Consider the reduction $\Delta(3, n)_{a_{1}^{1}}^{b}$ and apply Fact 3.2 to the chains $u^{\prime}=u^{\prime \prime} \geq u^{\prime}$ and $w=w^{\prime \prime} \geq w^{\prime}$ from (ii) of Cor.3.8 and $v=v^{\prime \prime} \geq v^{\prime}$. This yields the n-tower $v^{\prime}+\Delta(3, n)_{a_{1}^{1}}^{b}$ spanning $\left[u^{\prime}+v^{\prime}+w^{\prime}, u+v^{\prime}+w\right]$ and $u^{\prime}+M$ spanning $\left[u^{\prime}+v^{\prime}+w^{\prime}, u^{\prime}+v+w\right]$ and verifies the final strengthening $\Delta(3, n):=\Delta(3, n)_{a_{1}^{1}}^{b}, c_{14}^{\prime 1}:=c_{14}^{\prime 1}+u^{\prime}, a_{4}^{\prime 1}:=\left(a_{1}^{1}+u^{\prime}+v^{\prime}\right)\left(c_{14}^{\prime 1}+v+u^{\prime}\right)$.

The presentations n-tower of 2 - resp. 3 -frames and n-tower of skew $(4,3)$-frames have been constructed explicitly and uniformly for all n. This results in the following.

Corollary 3.10. There is an algorithm constructing for each n the presentation $\Omega(n)$, projective within the class of modular lattices.

4. Structure of towers of skew frames

While projectivity within \mathcal{M} of the presentation " n-tower (of skew frames)" has been established in Theorem 3.9, in this section we collect the needed concepts and results about models of this and related presentations - considered as lists of elements or configurations. Maps are supposed to match such lists. If such list is the concatenation of parts we say that it is obtained by combining these parts. We will use \bar{a} to denote lists of elements, in general, not necessarily the a_{1}, \ldots, a_{n} of an n-frame.

First, we recall some more details about particular elements in sublattices generated by (skew) frames - used in equivalent presentations e.g. in [10].
4.1. Frames. A well known equivalent definition of frames is obtained es follows cf [4]. Consider an n-frame Φ in a modular lattice L and define $c_{i j}=c_{j i}=\left(a_{i}+a_{j}\right)\left(c_{1 i}+c_{1 j}\right)$ for $1 \neq i \neq j \neq 1$, Then it follows

$$
\left(\sum_{i \in I} a_{i}\right) \cdot\left(\sum_{j \in J} a_{j}\right)=\left\{\begin{array}{ll}
a_{\perp} & \text { if } I \cap J=\emptyset \\
\sum_{k \in I \cap J} a_{k} & \text { else }
\end{array} \quad \text { for } I, J \subseteq\{1, \ldots, n\},\right.
$$

and, for pairwise distinct i, j, k,

$$
\begin{gathered}
a_{i}+a_{j}=a_{i}+c_{i j}, \quad a_{i} \cdot c_{i j}=a_{\perp} \\
c_{i k}=\left(a_{i}+a_{k}\right) \cdot\left(c_{i j}+c_{j k}\right) .
\end{gathered}
$$

We also write $\perp^{\Phi}=a_{\perp}^{\Phi}, a_{i}^{\Phi}, c_{i j}^{\Phi}$ for these elements and $\top^{\Phi}=\sum_{i=1}^{n} a_{i}$. Observe that, for any k, the $a_{i}, c_{i j}$ with $i, j \neq k$ form an $n-1$-frame $\Phi_{\neq k}$ in L. An important property of frames is the existence of the perspectivities $\pi_{k l}, k \neq l$, that is lattice isomorphisms between intervals of L matching $\Phi_{\neq k}$ with $\Phi_{\neq l}$

$$
\pi_{k l}:\left[a_{\perp}, \sum_{i \neq k} a_{i}\right] \rightarrow\left[a_{\perp}, \sum_{i \neq l} a_{i}\right] \text { where } \pi_{k l}(x)=\left(x+c_{k l}\right) \sum_{i \neq l} a_{i} .
$$

4.2. Reduction of frames. Given a frame Φ and $b_{1} \in L$ such that $a_{\perp} \leq b_{1} \leq a_{1}$, define

$$
b_{j}=a_{j}\left(b_{1}+c_{1 j}\right) \text { for } j \neq 1, b=\sum_{j=1}^{n} b_{i}, \text { and } b_{i j}=\left(b_{i}+b_{j}\right) c_{i j}
$$

to obtain, by upper reduction with b_{1}, the frame

$$
\Phi^{b_{1}}=\Phi_{a_{\perp}}^{b_{1}}=\left(b, b+a_{i(1 \leq i \leq n)}, b+c_{i j(i \neq j)}\right)
$$

and by lower reduction the frame

$$
\Phi_{b_{1}}=\Phi_{b_{1}}^{a_{1}}=\left(a_{\perp}, b_{i(1 \leq i \leq n)}, b_{i j(i \neq j)}\right) .
$$

In view of the perspectivities, in both cases the resulting frame is the same if, for some $i \neq 1$, the construction is carried out based on $a_{\perp} \leq$ $b_{i} \leq a_{i}$ such that $b_{1}=a_{1}\left(b_{i}+c_{1 i}\right)$.
4.3. Stable elements. Given a modular lattice L, element s of L and an n-frame Φ in L, the element s is j-stable in L for Φ if

$$
s a_{1}=s a_{j}=a_{\perp} \text { and } s+a_{1}=s+a_{j}=a_{1}+a_{j}
$$

and for all upper reductions with $b_{1} \in L, a_{\perp} \leq b_{1} \leq a_{1}$ one has

$$
s+b_{1}=s+b_{j} .
$$

In view of the perspectivities, if s is j-stable for Φ then $\pi_{j k}(s)$ is k stable for Φ. This crucial concept is due to Ralph Freese [6]. See [10, Lemma 2,3] for the following

Fact 4.1. If s is j - stable in L for Φ then for all $b_{1} \in L$ with $a_{\perp} \leq$ $b_{1} \leq a_{1}$, one has $s+b j$-stable in $\Phi^{b_{1}}$ and sb j-stable in $\Phi_{b_{1}}$.
4.4. Skew frames. Using the above view (Subsection 4.1) on frames in modular lattices, an equivalent definition of a skew $(n+1, n)$-frame $\Psi=\left(\Phi^{\prime}, \Phi\right)$ in a modular lattice L is that of a configuration which is composed by the n-frame Φ and the $n+1$-frame Φ^{\prime} such that $\Phi_{\neq n}^{\prime}$ is the reduction $\Phi_{a_{1}^{\prime}}$, in particular $a_{\perp}=a_{\perp}^{\prime}$. Observe that the perspectivity $\pi_{k l}$ of Φ induces the perspectivity $\pi_{k l}$ of $\Phi_{\neq n}^{\prime}$. We will deal with the cases $(3,2)$ and $(4,3)$, only.

Our basic example of a skew (4,3)-frame is as follows: For a prime p consider the \mathbb{Z}-module A with generators $e_{i}, i=1,2,3,4$ and relations $p^{2} e_{i}=0$ for $i \leq 3, p e_{4}=0$. Then a skew (4,3)-frame in the submodule lattice $L(A)$ is obtained as follows: Let $a_{\perp}=0, a_{i}=\mathbb{Z} e_{i}$, $c_{i j}=\mathbb{Z}\left(e_{i}-e_{j}\right), a_{i}^{\prime}=\mathbb{Z} p e_{i}, c_{i j}^{\prime}=\mathbb{Z}\left(p e_{i}-p e_{j}\right)$, for $i, j \leq 3, a_{4}^{\prime}=\mathbb{Z} e_{4}$, and $c_{i 4}^{\prime}=\mathbb{Z}\left(p e_{i}-e_{4}\right)$.

Dealing with a skew $(4,3)$-frame Ψ we consider $\Psi_{(3,2)}$ given by generators not involving index 2 and $\Psi^{(3,2)}=a_{2}+\Psi_{(3,2)}$. Observe that $\Psi_{(3,2)} \nearrow \Psi^{(3,2)}$ and that the relations of a skew (3,2)-frame are implied by those of a skew $(4,3)$-frame, in both cases.

For $a_{\perp} \leq b_{1} \leq a_{1}^{\prime} \leq d_{1} \leq a_{1}$ in L the lower reduction $\Psi_{b_{1}, d_{1}}$ is the skew $(n+1, n)$-frame which combines the lower reductions $\Phi_{b_{1}}^{\prime}$ and $\Phi_{d_{1}}$. For $a_{\perp} \leq b_{1} \leq a_{1}^{\prime}$ in L the upper reduction $\Psi^{b_{1}}$ combines the upper reductions $\Phi^{b_{1}}$ and $\Phi^{b_{1}}$.

4.5. Towers of skew frames.

Observation 4.2. Within \mathcal{M} a presentation equivalent to that of an n-tower $\Omega(n)$ is given by a list \bar{a} combining the skew (4,3)-frames $\Psi^{k}=$ $\left(\Phi^{\prime k}, \Phi^{k}\right)(1 \leq k \leq n)$ each consisting of the 4 -frame $\Phi^{\prime k}$ and the 3 -frame Φ^{k} where
$\Phi^{\prime k}=\bar{a}^{\prime k}=\left(a_{i}^{\prime k}, c_{i j}^{\prime k} \mid i, j \leq 4, i \neq j\right), \Phi^{k}=\bar{a}^{k}=\left(a_{i}^{k}, c_{i j}^{k} \mid i, j \leq 3, i \neq j\right)$ such that
$(*) \Psi_{(3,2)}^{k} \nearrow\left(\Psi^{k}\right)^{(3,2)} \nearrow \Psi_{(3,2)}^{l} \nearrow\left(\Psi^{l}\right)^{(3,2)}$ for $1 \leq k<l \leq n$.
Observe that $\Psi_{(3,2)}^{k}$ consists of the $a_{i}^{k}, c_{i j}^{k}, a_{i}^{\prime k}, c_{i j}^{\prime k}$ where $i, j \neq 2$ and that $\left(\Psi^{k}\right)^{(3,2)}=a_{2}^{k}+\Psi_{(3,2)}^{k}$. The exceptional role of index 2 (linked to the "upward direction") comes out of the construction of n-towers and fits to the application of [10].

Proof. Recall the definition of n-towers $\Omega(n)$ of skew frames in Subsection 3.8 and observe that the $a_{i}^{1}, c_{i j}^{1}, a_{i}^{\prime 1}, c_{i j}^{11}$ form a skew $(4,3)$ frame Ψ^{1}, that $a_{2}^{n}, a_{1}^{1}, a_{3}^{1}, a_{4}^{\prime 1}$ are relatively independent over a_{\perp}^{1}, and that $a_{1}^{k}=a_{\perp}^{k}+a_{1}^{1}$. Thus, $\Psi_{(3,2)}^{1}$ is a skew (3,2)-frame whence so is (for each $k>1) a_{\perp}^{k}+\Psi_{(3,2)}^{1}$ which combines with a_{2}^{k}, c_{12}^{k} to form a skew $(4,3)$-frame Ψ^{k} such that $\Psi_{(3,2)}^{1} \nearrow \Psi_{(3,2)}^{k}$. This proves $(*)$ in view of the remarks following Fact 3.1 and applies also to skew frame as considered in the preceding Subsection.

A model is obtained from the submodule lattice of the free \mathbb{Z} module with generators $e_{1}, e_{2}, e_{3}, e_{4}$ and relations $p^{2} e_{1}=0, p^{3 n-1} e_{2}=0, p^{2} e_{3}=$ 0 and $p e_{4}=0$. Indeed, put (where $i=1,3$)

$$
\begin{gathered}
a_{\perp}^{k}=\mathbb{Z} p^{3(n-k)+2} e_{2}, a_{2}^{k}=\mathbb{Z} p^{3(n-k)} e_{2}, c_{2 i}^{k}=\mathbb{Z}\left(p^{3(n-k)} e_{2}-e_{i}\right) \\
a_{i}^{k}=a_{\perp}^{k}+\mathbb{Z} e_{i}, c_{13}^{k}=a_{\perp}^{k}+\mathbb{Z}\left(e_{1}-e_{3}\right), c_{i 2}^{k}=a_{\perp}^{k}+\mathbb{Z}\left(e_{i}-p^{3(n-k)} e_{2}\right) \\
a_{2}^{\prime k}=\mathbb{Z} p^{3(n-k)+1} e_{2}, c_{2 i}^{\prime k}=\mathbb{Z}\left(p^{3(n-k)+1} e_{2}-p e_{i}\right), c_{24}^{\prime k}=\mathbb{Z}\left(p^{3(n-k)+1} e_{2}-e_{4}\right), \\
a_{i}^{\prime k}=a_{\perp}^{k}+\mathbb{Z} p e_{i}, c_{13}^{\prime k}=a_{\perp}^{k}+\mathbb{Z}\left(p e_{1}-p e_{3}\right), c_{i 4}^{\prime k}=a_{\perp}^{k}+\mathbb{Z}\left(p e_{i}-e_{4}\right) .
\end{gathered}
$$

4.6. Reduction of towers. Given an n-tower $\Omega(n)=\bar{a}$ in a modular lattice L, consider fixed $m>0$ and $b_{1}, d_{1} \in L$ such that

$$
a_{\perp}^{m} \leq b_{1} \leq a_{1}^{\prime m} \leq d_{1} \leq a_{1}^{m} .
$$

The lower reduction $\Omega(n)_{b_{1}, d_{1}}$ of $\Omega(n)$ combines the following reductions of skew-frames $\Psi^{k}=\left(\Phi^{\prime k}, \Phi^{k}\right)$

$$
\begin{array}{lll}
\left(\Phi_{a_{1}^{k} b_{1}}^{\prime k},\right. & \left.\Phi_{a_{1}^{k} d_{1}}^{k}\right) & \text { for } 1 \leq k<m \\
\left(\Phi_{b_{1}}^{\prime m},\right. & \left.\Phi_{d_{1}}^{m}\right) & \\
\left(\Phi_{b_{1}+a_{\perp}^{k}}^{\prime k},\right. & \left.\Phi_{d_{1}+a_{\perp}^{k}}^{k}\right) & \text { for } m<k \leq n
\end{array}
$$

Given $b_{1} \in L$ such that

$$
a_{\perp}^{m} \leq b_{1} \leq a_{1}^{\prime m}
$$

the upper reduction $\Omega(n)^{b_{1}}$ of $\Omega(n)$ combines the following reductions of skew-frames $\Psi^{k}=\left(\Phi^{\prime k}, \Phi^{k}\right)$

$$
\begin{array}{lll}
\left(\left(\Phi^{\prime k}\right)^{a_{1}^{k} b_{1}},\right. & \left.\left(\Phi^{k}\right)^{a_{1}^{k} b_{1}}\right) & \text { for } 1 \leq k<m \\
\left(\left(\Phi^{\prime \prime}\right)^{b_{1}},\right. & \left.\left(\Phi^{m}\right)^{b_{1}}\right) & \\
\left(\left(\Phi^{\prime k}\right)^{b_{1}+a_{\perp}^{k}},\right. & \left.\left(\Phi^{k}\right)^{b_{1}+a_{\perp}^{k}}\right) & \text { for } m<k \leq n
\end{array}
$$

We speak of the lower resp. upper reduction of $\Omega(n)$ induced by the reduction of Ψ^{k}.

Observation 4.3. If the configuration $\Omega(n)$ is an n-tower of skew frames $\Psi^{k}=\left(a^{\prime k}, c_{i j}^{\prime k}, a^{k}, c_{i j}^{k}\right)$ in a modular lattice, L, then so are any of its lower reductions $\Omega(n)_{b_{1}, d_{1}}$ where $b_{1}, d_{1} \in L$ and any of its upper reductions $\Omega(n)^{b_{1}}$ where $b_{1} \in L$. Moreover, if $\phi: L \rightarrow L^{\prime}$ is a homomorphism into a modular lattice L^{\prime} such that $\phi\left(b_{1}\right)=\phi\left(a_{\perp}^{\prime m}\right)$ and $\phi\left(d_{1}\right)=\phi\left(a_{1}^{m}\right)$ resp. $\phi\left(b_{1}\right)=\phi\left(a_{\perp}^{m}\right)$ then $\phi(\Omega(n))=\phi\left(\Omega(n)_{b_{1}, d_{1}}\right)$ resp. $\phi(\Omega(n))=\phi\left(\Omega(n)^{b_{1}}\right)$, as configurations in L^{\prime}.

5. Coordinates and characteristic

5.1. Coordinate ring. Following von Neumann [21] (cf. Freese [4, $5,6]$ and [11, Lemma 6]) with any 4 -frame Φ in a modular lattice L and choice of 3 different indices (here we use $1,3,4$) one obtains a (coordinate) ring $R(\Phi, L)$ with unit c_{13} and zero a_{1}, the elements of which are the $r \in L$ such that $r a_{3}=a_{\perp}$ and $r+a_{3}=a_{1}+a_{3}$. More precisely, there are binary lattice terms $x \oplus_{\bar{z}} y$ and $x \otimes_{\bar{z}} y$ and a unary term $\ominus_{\bar{z}} x$ defining these coordinate rings. Here, one has $\bar{z}=$ $\left(z_{i}, z_{i j} \mid i, j \neq 2\right)$ corresponding to the 3 -frame ($\left.a_{i}, c_{i j} \mid i, j \neq 2\right)$. For given L and Φ these rings are isomorphic for any choice of the triple of indices - via the perspectivities resp. compositions thereof,

If L embeds into the the subgroup lattice of an abelian group A and if $\Phi=\left(a_{i}, c_{i j} \mid i, j \neq 2\right)$ is a 3 -frame in L then the above definitions apply to obtain the ring $R(\Phi, L)$, embedded into the endomorphism ring of the associated subquotient of A.

An element r of $R(\Phi, L)$ is invertible if and only if $r a_{1}=a_{\perp}$ and $r+a_{1}=a_{1}+a_{3}$; these form the group $R^{*}(\Phi, L)$ of units in the ring $R(\Phi, L)$. Moreover, there is a lattice term $t(x, \bar{z})$ such that $t(r, \bar{a})$ is the inverse of r if r is invertible.
5.2. Stable elements. Obviously, 3-stable elements are invertible. Again, the following crucial tool is due to Ralph Freese [6].

Lemma 5.1. (i) The elements of L which are 3-stable for the 4frame Φ in L form a subgroup $R^{\#}(\Phi, L)$ of the group $R^{*}(\Phi, L)$ of units.
(ii) For each $b_{1} \in L$ with $a_{\perp} \leq b_{1} \leq a_{1}$ the map $r \mapsto r+\perp^{\Phi^{b_{1}}}$ is a homomorphism $\beta_{b_{1}}: R^{\#}(\Phi, L) \rightarrow R^{\#}\left(\Phi^{b_{1}}, L\right)$.
(iii) If r is 3-stable for Φ and $b_{1}=a_{1}\left(r+c_{13}\right)$ then $\beta_{b_{1}}(r)=c_{13}^{\Phi^{b_{1}}}$ is the unit of $R^{\#}\left(\Phi^{b_{1}}, L\right)$.

Proof. (i) and (ii) are Lemma 1.3-6 of [6]. For convenience, we prove (iii). With $b=\perp^{\Phi^{b_{1}}}$ one has $r+b=r+b_{1}+b=\left(a_{1}+r\right)\left(c_{13}+r\right)+b \geq$ $c_{13}+b$ and equality follows since by (ii) both are complements of $a_{3}+b$ in $\left[b, b+a_{1}+a_{3}\right]$.
5.3. Characteristic. With the term $x \oplus_{z} y$ of Subsection 5.1, define recursively, $1 \otimes_{\bar{z}} z_{14}=z_{14}$ and $(n+1) \otimes_{\bar{z}} z_{14}=z_{14} \oplus_{\bar{z}}\left(n \otimes_{\bar{z}} z_{14}\right)$. In the sequel, p will be a fixed prime. The 4 -frame $\Phi=\bar{a}$ has characteristic p if $p \otimes_{\bar{a}} c_{14}=a_{1}$. Ralph Freese [4] has shown that, for any frame $\Phi=\bar{a}$ in a modular lattice L, the frame $\Phi_{a_{1}\left(p \otimes \bar{a} c_{14}\right)}$ has characteristic p - and equals Φ if Φ has characteristic p, already.

Let $\left(\bar{z}^{\prime}, \bar{z}\right)$ denote a list of variables to be used for substituting skew $(4,3)$-frames. In [10, p. 516], a term $p_{32}(\bar{z})$ has been defined and a skew (4,3)-frame $\left(\Phi^{\prime}, \Phi\right)=\left(\bar{a}^{\prime}, \bar{a}\right)$ has been called of characteristic $p \times p$ if Φ^{\prime} is of characteristic p and $p_{32}(\bar{a}) \geq a_{3}^{\prime}$ and $a_{3}+p_{32}(\bar{a})=a_{2}^{\prime}+p_{32}(\bar{a})=$ $a_{2}^{\prime}+a_{3}$. The following is [10, Lemma 9] (in the proof given, there, observe that $b_{3} \geq a_{3}^{\prime}$ since $\left.p_{32} \geq a_{3}^{\prime}\right)$.

Lemma 5.2. There are terms $b_{1}\left(\bar{z}^{\prime}, \bar{z}\right)$ and $d_{1}\left(\bar{z}^{\prime}, \bar{z}\right)$ such that for anj skew (4.3)-frame $\Psi=\left(\Phi^{\prime}, \Phi\right)$ in a modular lattice L one has

$$
a_{\perp} \leq \mathbf{b}_{1}:=b_{1}\left(\bar{a}^{\prime}, \bar{a}\right) \leq a_{1}^{\prime} \leq \mathbf{d}_{1}:=d_{1}\left(\bar{a}^{\prime}, \bar{a}\right) \leq a_{1}
$$

and obtains $\Psi_{\mathbf{b}_{1}, \mathbf{d}_{1}}$ of characteristic $p \times p$. Moreover, if Ψ has characteristic $p \times p$ then $\mathbf{b}_{1}=a_{\perp}$ and $\mathbf{d}_{1}=a_{1}$, that is $\Psi_{\mathbf{b}_{1}, \mathbf{d}_{1}}=\Psi$.

As in Freese's result, one can derive projectivity but, in contrast, it appears unlikely that characteristic $p \times p$ is preserved under reductions. Though, existence of stable elements is preserved (see Fact 4.1). The following is a consequence of [10, Cor.13], applying the perspectivity π_{23} to the term denoting the element $g_{1}^{*} 2$-stable w.r.t. Φ^{\prime} constructed, there.

Lemma 5.3. There is a term $g^{+}\left(\bar{z}^{\prime}, \bar{z}\right)$ such that, for any skew $(4,3)$ frame $\Psi=\left(\Phi^{\prime}, \Phi\right)=\left(\bar{a}^{\prime}, \bar{a}\right)$ of characteristic $p \times p$ in a modular lattice L, one has $g^{+}(\Psi)=g^{+}\left(\bar{a}^{\prime}, \bar{a}\right)$ an element of L which is 3 -stable for Φ^{\prime}.

6. Basic models

6.1. Glueing construction of Dilworth and Hall. Given intervals $L_{i}=\left[a_{i}, b_{i}\right], i=1, \ldots, n$, in a modular lattice, L, such that $a_{i} \leq a_{i+1}$ and $b_{i} \leq b_{i+1}$ for $1 \leq i<n$, the union of these intervals is a sublattice of L and one has isomorphisms $\alpha_{i}:\left[c_{i}, b_{i}\right] \rightarrow\left[a_{i+1}, d_{i}\right], i<n$, with $\alpha_{i}(x)=x+a_{i+1}$ (and inverse $\alpha_{i}^{-1}(y)=b_{i} y$) where $c_{i}=b_{i} a_{i+1}$ and $d_{i}=b_{i}+a_{i+1}$. Conversely, given pairwise disjoint modular lattices $L_{i}=\left[a_{i}, b_{i}\right](i \leq n)$ and isomorphisms $\alpha_{i}:\left[c_{i}, b_{i}\right]_{L_{i}} \rightarrow\left[a_{i+1]}, d_{i+1}\right]_{L_{i+1}}$ $(i<n)$ where $c_{i} \in L_{i}$ and $d_{i+1} \in L_{i+1}$ there is a modular lattice L which is the union of interval sublattices L_{i}, related as above.

Also, one obtains a homomorphic image of L in which the intervals [$\left.c_{i}, b_{i}\right]$ and $\left[a_{i+1}, d_{i}\right]$ are identified via α_{i}. In case $n=2$, write $L_{x}=L_{1}$, $L_{y}=L_{2}$, and $\alpha_{y x}=\alpha_{1}$, denote this lattice by $L_{x} \bowtie L_{y}$, and observe that for $r \in L_{x}$ and $s \in L_{y}$ one has

$$
r+_{L_{x \bowtie y}} s=\left(r+_{L_{x}} a_{2}\right)+_{L_{y}} s \text { and } r \cdot \cdot_{L_{x \bowtie y}} s=r \cdot \cdot_{x}\left(b_{1} \cdot L_{y} s\right)
$$

6.2. Glued sums. In this version, the construction of Dilworth and Hall can be generalized replacing the chain $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ by a lattice, as done in [7] (cf. [10, Section 3]) - reportedly, this was well known to Dilworth, already. We will describe only the special case used here.

Consider a modular lattice L having sublattice S of height 3 with greatest element 1 and an isomorphism $x \mapsto x^{*}$ of S onto a sublattice S^{*} of L such that $x<x^{*}$ for all $x \in S$ and such that L is the union of its intervals $L_{x}=\left[x, x^{*}\right], x \in S$. Moreover, writing $x \prec y$ if y is an upper cover of x in S, it is required that $y \leq x^{*}$ for $x \prec y$. Then L is the S-glued sum of its interval sublattices $L_{x},(x \in S)$. In particular, one has the sublattice $L_{x} \bowtie L_{y}$ of L for $x \prec y$ and any join or meet in L can be computed combining computations in these sublattices. Also, L is (up to isomorphism) uniquely determined by S and the system ($L_{x \bowtie y} \mid x \prec y$ in S) of sublattices.

Now, consider an ideal T of S and some set U of atoms in S such that $U \cap T=\emptyset$. Assume that, for all $u \in U, \phi_{u 0}$ an automorphism of $\left[u, 0^{*}\right]$ and, for any $y \in S$ with $u \prec y, \phi_{y u}:\left[\phi_{u 0}(y), u^{*}\right] \rightarrow\left[y, u^{*}\right]$ an isomorphism such that $\phi_{y u}$ coincides with $\phi_{u 0}^{-1}$ on $\left[\phi_{u 0}(y), 0^{*}\right]$ and is identity on $\left[\mathbf{1}, u^{*}\right]$ for all $u \in U$. Put $\phi_{y x}$ identity on $\left[y, x^{*}\right]$ for all other $x \prec y$.

Observation 6.1. Under the above hypotheses, there are a modular lattice L^{\prime}, embeddings $\sigma: S \rightarrow L^{\prime}$ and $\tau: S^{*} \rightarrow L^{\prime}$ such that L^{\prime} is the S-glued sum of its intervals $L_{x}^{\prime}=[\sigma(x), \tau(x)]$ where $L_{x}^{\prime}=L_{x}$ for $x \in T$. Moreover, there are isomorphisms $\psi_{x}: L_{x} \rightarrow L_{x}^{\prime},(x \in$
$S)$, where ψ_{x} is identity for $x \in T$, such that ψ_{x} and ψ_{y} restrict to the same isomorphism $\left[y, x^{*}\right] \rightarrow[\sigma(y), \tau(x)]$ and $\psi_{x} \cup \psi_{y}$ provides an isomorphism $L_{x \bowtie y} \rightarrow L_{x \bowtie y}^{\prime}$ for all $x \prec y$. On the other hand, given all this, $L_{T}=\bigcup_{x \in T} L_{x}$ is an ideal of both L and L^{\prime} and $\bigcup_{x \in T} \psi_{x}$ identity on L_{T}. Calculations in L^{\prime} can be carried out combining calculations in the $L_{x \bowtie y}^{\prime}$ - which are calculations in L if $x, y \notin U$..
6.3. Capturing a group generator by a stable term. Following the construction in [10, Section 4], fix a prime p. Recall the lattice $L(A)$ from Subsection 4.4. Let $\mathbf{1}=\sum_{i=1}^{3} \mathbb{Z} p e_{i}$ and $S=[0, \mathbf{1}]$; that is, S is the ideal $L(p A)$ of $L(A)$. Note that $X \mapsto X^{*}=\{v \in A \mid p v \in X\}$ is an isomorphism $S \rightarrow\left[p A+\mathbb{Z} e_{4}, A\right]$ and $L(A)$ is the union of its intervals $\left[X, X^{*}\right], X \in S$. Put $T=\left[0, \mathbb{Z} p e_{1}+\mathbb{Z} p e_{3}\right]$.

Given a group G, let Q denote the group ring $\mathbb{Z}_{p^{2}}(G)$ with coefficients the integers modulo p^{2}. The free Q-module B with generators $e_{1}, e_{2}, e_{3}, e_{4}$ and relation $p e_{4}=0$ has subgroup A generated by $e_{1}, e_{2}, e_{3}, e_{4}$ and $L(A)$ embeds into the Q-submodule lattice $L(B)$ of B via $X \mapsto \varepsilon(X)=Q X$; moreover, the union of intervals $\left[Q X, Q X^{*}\right]$ in $L(B), X \in S$, forms a sublattice L of $L(B)$.

Now, $L_{T}(G)=\bigcup_{X \in T}\left[Q X, Q X^{*}\right]$ is an ideal of L. Moreover, in $L_{T}(G)$ there is a (canonical) skew (3,2)-frame $\Psi^{0}=\left(\Phi^{\prime 0}, \Phi^{0}\right)$ given by the submodules

$$
\begin{gathered}
\Phi^{\prime 0}: Q p e_{1}, Q p e_{3}, Q e_{4}, Q\left(p e_{1}-p e_{3}\right), Q\left(p e_{1}-e_{4}\right), Q\left(p e_{3}-e_{4}\right) \\
\Phi^{0}: Q e_{1}, Q e_{3}, Q\left(e_{1}-e_{3}\right) .
\end{gathered}
$$

Choose $L_{0}(G)$ as the ideal $\left[0, \top^{\left.\Psi_{(3,2)}^{0}\right]}\right.$ of $L_{T}(G)$. The group G embeds into the group of units of the coordinate ring $R\left(\Phi^{\prime 0}, L_{0}(G)\right)$ via

$$
g \mapsto Q\left(p e_{1}-g p e_{3}\right) .
$$

Lemma 6.2. For each group G and $g \in G$ there is a modular lattice $L(G, g)$ with spanning skew $(4,3)$-frame $\Psi=\left(\Phi^{\prime}, \Phi\right)$ of characteristic $p \times p$ and an isomorphism ω from $L_{0}(G)$ onto the interval $L_{0}(G, g)=\left[0, \top^{\Psi_{(3,2)}}\right]$ of $L(G, g)$ matching the skew $(3,2)$-frame Ψ^{0} of $L_{0}(G)$ with $\Psi_{(3,2)}$, inducing an isomorphism from $R\left(\Phi^{\prime 0}, L_{0}(G)\right)$ onto $R\left(\Phi^{\prime}, L_{0}(G, g)\right)$, and such that

$$
(*) \quad \omega\left(Q\left(p e_{1}-g p e_{3}\right)=g^{+}(\Psi) .\right.
$$

Proof. Leaving $(*)$ aside, the lattice $L(G, g)$ and the isomorphism ω have been constructed in [10, Section 4] according to the scheme in Observation 6.1. Actually, we may assume $L_{T}(G)$ an ideal of $L(G, g)$ and ω identity. Moreover, according to [10, Lemma 18] one has

$$
Q\left(p e_{1}-g p e_{2}\right)=g^{*}(\Psi) \in L_{T}(G)
$$

with $g^{*}(\Psi)$ stable for Φ^{\prime} according to [10, Cor.13] and (*) follows applying the perspectivity π_{23} cf. Lemma 5.3.

Observe that in [10] Z_{p} has been used to denote both the ring $\mathbb{Z} / p \mathbb{Z}$ and the ideal $p Z_{p^{2}}$ of $Z_{p^{2}}=\mathbb{Z} / p^{2} \mathbb{Z}$. Similarly, R denoted both the ring $Q / p Q$ and the ideal $p Q$ of Q. In this context, given an element $a=\sum_{i=1}^{3} r_{i} e_{i} \in A$ one has the subgroup $Z_{p} a=\mathbb{Z} \sum_{i=1}^{3} r_{i} p e_{i}$ of $p A$ and given $b=\sum_{i=1}^{3} r_{i} e_{i} \in B$ one has the Q-submodule $R b=Q \sum_{i=1}^{3} r_{i} p e_{i}$ of $p B$.

6.4. Basic model.

Theorem 6.3. For each group G with generators $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ in G there is a modular lattice $L(G, \bar{g})$ such that the following hold
(1) $L(G, \bar{g})$ contains an n-tower $\Omega(n)_{\text {can }}$ (to be referred to as canonical) of skew $(4,3)$-frames $\Psi^{i}=\left(\Phi^{\prime i}, \Phi^{i}\right)$ of characteristic $p \times p$, $i=1, \ldots, n$
(2) There is an embedding $\gamma: G \rightarrow R\left(\Phi^{\prime n}, L(G, \bar{g})\right)$ such that, for all $i, g^{+}\left(\Psi^{i}\right)+\perp^{\Psi^{n}}=\gamma\left(g_{i}\right)$ and $\gamma\left(g_{i}\right) \cdot\left(a_{1}^{\Phi^{\prime i}}+a_{3}^{\Phi^{\prime i}}\right)=g^{+}\left(\Psi^{i}\right)$.
(3) $L(G, \bar{g})$ is finite if G is finite.

Proof. Given i, consider $L\left(G, g_{i}\right)$ from Lemma 6.2 with skew $(4,3)$ frame $\Psi^{i}=\left(\Phi^{\prime i}, \Phi^{i}\right)$ and isomorphism $\omega_{i}: L_{0}(G) \rightarrow L_{0}\left(G, g_{i}\right)$. We may assume that the $L\left(G, g_{i}\right)$ are pairwise disjoint lattices. Now,

$$
\alpha_{i}(x)=\omega_{i+1}\left(\omega_{i}^{-1}\left(x \cdot \top_{(3,2)}^{i}\right)\right) \in L_{0}\left(G, g_{i}\right)
$$

defines an isomorphism

$$
\alpha_{i}:\left[a_{2}^{\Psi^{i}}, \top^{\Psi^{i}}\right]_{L\left(G, g_{i}\right)} \rightarrow\left[\perp^{\Psi^{i+1}}, \top^{\Psi_{(3,2)}^{i+1}}\right]_{L_{i+1}\left(G, g_{i+1}\right)} .
$$

Let $L(G, \bar{g})$ arise by Dilworth-Hall glueing (as described in Subsection 6.1) the $L\left(G, g_{i}\right)$ via the isomorphisms α_{i}.
one has, due to the glueing via the α_{i},

$$
(* *) \omega_{i}(x)+\perp^{\Psi^{j}}=\omega_{j}(x) \text { for } x \in L_{0}(G)
$$

for $j=i+1$. The case $i \leq j<n$ as well as the relations required for an n-tower follow by induction and transitivity of \nearrow - recall $\Psi_{(3,2)}^{i} \nearrow$ $\Psi^{i(3,2)}$. With the canonical embedding

$$
\eta: G \rightarrow R\left(\Phi^{\prime 0}, L(G, \bar{g})\right) \text { where } \eta(x)=Q\left(p e_{1}-x p e_{3}\right)
$$

equation $(*)$ of Lemma 6.2 together with $(* *)$ for $j=n$ yield

$$
\omega_{n}\left(\eta\left(g_{i}\right)\right)=\omega_{i}\left(\eta\left(g_{i}\right)\right)+\perp^{\Psi^{n}}=g^{+}\left(\Psi^{i}\right)+\perp^{\Psi^{n}} .
$$

Since G is generated by $\bar{g}, \omega_{n} \circ \eta$ restricts to an embedding $\gamma: G \rightarrow$ $R\left(\Phi^{\prime n}, L(G, \bar{g})\right)$ as required in (2).

7. Unsolvability

In order to prove Theorem 1.2 applying Slobodkoi's Theorem 1.1, we show that there is an algorithm reducing the Uniform Word Problem for the class \mathcal{G}_{0} of all finite groups to the decision problem for the equational theory of the class \mathcal{M}_{0} of finite modular lattices. Moreover, we observe that this reduction produces identities in $n+6$ lattice variables, if applied to group presentations in n generators. To prove the reduction, we verify the hypotheses of Lemma 2.4.

Proof. Consider a finite group presentation given by words $w_{j}(\bar{g}), 1 \leq$ $j \leq h$ in a list $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ of generator symbols and relations $w_{j}(\bar{g})=e, j=1, \ldots, h$. We construct a series of n-towers Ω_{m} of skew $(4,3)$-frames

$$
\begin{gathered}
\Omega_{m}=\left(\left.\Psi_{m}^{k}\right|_{k=1, \ldots, n}\right)=\left(\Phi_{m}^{\prime k},\left.\Phi_{m}^{k}\right|_{k=1, \ldots, n}\right) \\
=\left(a_{m i}^{\prime k}, c_{m[j}^{\prime k} ; a_{m i}^{k},\left.c_{m i j}^{k}\right|_{k=1, \ldots, n}\right), 0 \leq m \leq \mu=n+h .
\end{gathered}
$$

The list of generators of Ω_{0} is also denoted by \bar{a}, that of Ω_{m} by \bar{a}_{m}. Let $F=F_{0}$ denote the modular lattice freely generated by the n-tower $\Omega=\Omega_{0}$. The construction will be such that Ω_{m} generates a sublattice F_{m} of F_{0} so that $F_{m+1} \subseteq F_{m}$ for all $m<\mu$. Moreover, the following will hold.
(A) For the 4 -frame $\Phi_{\mu}^{\prime n}=\left(a_{\mu, i}^{\prime n}, c_{\mu, i j}^{\prime n}\right)$ in F_{μ} one has a list of elements $\bar{s}_{\mu}=\left(s_{\mu 1}, \ldots, s_{\mu n}\right)$ in the group $R^{\#}\left(\Phi_{\mu}^{\prime}, F\right)$ such that $w_{j}\left(\bar{s}_{\mu}\right)=$ $c_{\mu, 13}^{\prime n}$ for $1 \leq j \leq h$.
(B) For any group G and \bar{g} in G with $w_{j}(\bar{g})=e$ for $1 \leq j \leq$ h one has $\phi(\bar{a})=\phi\left(\bar{a}_{\mu}\right)$ and $\phi\left(s_{\mu i}\right)=\gamma\left(g_{i}\right)$ for $i=1, \ldots, n$ where $\phi: F \rightarrow L(G, \bar{g})$ is the homomorphism mapping \bar{a} onto the canonical n-tower $\Omega_{c a n}$ of the lattice $L(G, \bar{g})$ constructed in Thm. 6.3.
Observe that ϕ in (B) exists by Thms. 3.9 and 6.3 (1). This construction will be uniform for all group presentations, to be implemented by an algorithm as required in Lemma 2.4.

In the context of this lemma, we consider quasi-identities β in the language of groups with antecedent α the conjunction of identities $w_{j}(\bar{y})=e, j=1, \ldots, h$, where $\bar{y}=\left(y_{1}, \ldots, y_{n}\right)$. The presentation required in (a) of this Lemma is that of an n-tower Ω of skew frames with generator symbols \bar{a}. Recall from Thm. 3.9 that Ω can be defined in terms of $n+6$ generators.

The terms $u_{i}(\bar{x})$ are chosen such that $\bar{u}(\bar{a})$ is the n-tower generating F_{μ} within F. Hypothesis (i) is satisfied due to Cor 3.10. Concerning
hypothesis (ii), consider an homomorphism $\phi: F \rightarrow L \in \mathcal{M}$ and observe that $\phi(\bar{u}(\bar{a}))=\phi\left(\bar{a}_{\mu}\right)=\phi(\bar{a})$ by (B).

The translation required in (b) is given by the constant $c_{13}^{\prime n}$ defining the neutral element and the terms defining multiplication and inversion in the group $R^{\#}\left(\Phi^{\prime n}, F\right)$ related to the 4 -frame $\Phi^{\prime n}=\left(a_{i}^{\prime n}, c_{i j}^{\prime n}\right)$ which is part of the n-tower \bar{a}. According to Subsections 5.1 and 5.2 this translation satisfies hypothesis (iii) within \mathcal{M}. Also by this, the algebra G in (iv) is indeed a group, finite if L is finite. Moreover, the generators $\left.\bar{u}\right|_{n}(\phi(\bar{a}))$ satisfy α by (A).

Finally, hypothesis (v) is granted by Theorem 6.3 and (B).
Outline of construction: To obtain \bar{a}_{μ} we put $\bar{a}_{0}=\bar{a}$ and construct, iteratively, n-towers $\Omega_{m}=\bar{a}_{m}, m \leq \mu$.
Case 1: $m \leq n$
(1) The n-tower $\Omega_{m}=\bar{a}_{m}$ is obtained from the n-tower $\Omega_{m-1}=$ \bar{a}_{m-1} by lower reduction, induced by a reduction of Ψ_{m-1}^{m-1} to Ψ_{m}^{m}, within the sublattice F_{m-1} of F generated by \bar{a}_{m-1},
(2) One has m elements $s_{m 1}, \ldots, s_{m m} 3$-stable in F for the 4 -frame $\Phi_{m}^{\prime n}$ in Ω_{m}.
(3) $s_{m i}(i \leq m-1)$ is obtained as in Fact 4.1 by the lower reduction in (1) from $s_{m-1, i}$ stable in F for $\Phi_{m-1}^{\prime n}$ while $s_{m m}=s+\perp^{\Psi_{m}^{n}}$ where $s=g^{+}\left(\Psi_{m}^{m}\right)$ is 3-stable in F for the 4 -frame $\Phi_{m}^{\prime m}$.
(4) The reduction in (3) is chosen such that the skew frame Ψ_{m-1}^{m} is reduced as in Lemma 5.2 to the skew frame Ψ_{m}^{m} having characteristic $p \times p$.

Case 2: $n<m \leq \mu=n+h$.
(5) \bar{a}_{m} is obtained from \bar{a}_{m-1} by upper reduction within the sublattice F_{m-1} of F generated by \bar{a}_{m-1}.
(6) One has a list \bar{s}_{m} of n elements stable in F for the 4 -frame $\Phi_{m}^{\prime n}$ and satisfying $w_{j}\left(\bar{s}_{m}\right)=c_{m, 13}^{\prime n}$ for $j \leq m-n$, within the group $R^{\#}\left(\Phi_{m}^{\prime n}, F\right)$.
(7) These are obtained from \bar{s}_{m-1} by the upper reduction in (5).

Proof of (A) and (B). We show, by induction, that for all $m \leq \mu$

- $\phi\left(\bar{a}_{m}\right)=\phi(\bar{a})$, that is $\phi\left(\Omega_{m}\right)=\phi(\Omega)$.
- \bar{s}_{m} is a list of stable elements for $\Phi_{m}^{\prime n}$
- $\phi\left(s_{m i}\right)=\gamma\left(g_{i}\right)$ for $i \leq \min (m, n)$.
- $w_{j}\left(\bar{s}_{m}\right)=c_{m, 13}^{\prime n}$ where $m \geq n$ and $j \leq h=m-n$.

The case $m=0$ is just the definition of ϕ. For $m \leq n$, we apply Lemma 5.2 to Ψ_{m-1}^{m}, that is with $\mathbf{b}_{1}=b_{1}\left(\bar{a}_{m-1}^{\prime m}, \bar{a}_{m-1}^{m}\right)$ and $\mathbf{d}_{1}=$ $d_{1}\left(\bar{a}_{m-1}^{\prime m}, \bar{a}_{m-1}^{m}\right)$. By inductive hypothesis one has $\phi\left(\Psi_{m-1}^{m}\right)=\phi\left(\Psi^{m}\right)$ which is of characteristic $p \times p$ as part of the canonical n-tower of
$L(G, \bar{g})$, whence $\phi\left(\mathbf{b}_{1}\right)=\phi\left(\perp^{\Psi_{m}^{m}}\right)$ and $\phi\left(\mathbf{d}_{1}\right)=\phi\left(a^{\prime \Psi_{m}^{m}}\right)$ in view of (4). It follows

$$
\phi\left(\Psi_{m}^{m}\right)=\phi\left(\left(\Psi_{m-1}^{m}\right)_{\mathbf{b}_{1}, \mathbf{d}_{1}}\right)=\left(\phi\left(\Psi_{m-1}^{m}\right)\right)_{\phi\left(\mathbf{b}_{1}\right), \phi\left(\mathbf{d}_{1}\right)}=\phi\left(\Psi_{m-1}^{m}\right)=\phi\left(\Psi^{m}\right)
$$

This in turn implies $\phi\left(\Omega_{m}\right)=\Phi\left(\Omega_{m-1}\right)$ in view of Observation 4.3. The element s in (3) being chosen as $s=g^{+}\left(\Psi_{m}^{m}\right)$ according to Lemma 5.3 we have $s 3$-stable for $\Phi_{m}^{\prime m}$ and $s_{m m} 3$-stable for $\Phi_{m}^{\prime n}$ due to the isomorphism induced by $\left(\Psi_{m}^{m}\right)_{3,2} \nearrow\left(\Psi_{m}^{n}\right)_{3,2}$ which matches $\Phi_{m}^{\prime m}$ with $\Phi_{m}^{\prime n}$. Moreover, $\phi\left(s_{m m}\right)=\gamma\left(g_{m}\right)$ by (2) of Thm. 6.3. For $i<m$ the other hand, according to (3) $s_{m i}$ is obtained from $s_{m-1, i}$ as in Fact 4.1 applying the reduction with $\mathbf{b}_{1}+a_{\perp}^{n}$ to the 4 -frame $\Phi_{m-1}^{\prime n}$. In particular, $s_{m i}$ is stable for $\Phi_{m}^{\prime n}$. Since $\phi\left(\Omega_{m}\right)=\phi\left(\Omega_{m-1}\right)$ it follows that $\phi\left(s_{m i}\right)=\phi\left(s_{m-1, i}\right)=$ $\gamma\left(g_{i}\right)$.
For $m=n+j$ we proceed with the same kind of reasoning, now referring to Lemma 5.1, to add $w_{j}\left(\bar{s}_{m}\right)=c_{m, 13}^{\prime n}$, while stable \bar{s}_{m-1} leads to stable \bar{s}_{m}, and $\phi\left(s_{m-1, i}\right)=\gamma\left(g_{i}\right)$ to $\phi\left(s_{m, i}\right)=\gamma\left(g_{i}\right)$ and $w_{i}\left(\bar{s}_{m-1}\right)=$ $c_{m-1,13}^{\prime n}$ to $w_{i}\left(\bar{s}_{m}\right)=c_{m, 13}^{\prime n}$ for all $i<m-n$.

8. REmaRKs

Reducing (Restricted) Word Problems for groups to such for modular lattices follows the same scheme in the finite and in the infinite case. Recall from Subsection 5.1 that with any 4 frame in a modular lattice one has the associated von Neumann coordinate ring $R(\Phi)$ with subgroup $R^{*}(\Phi)$ of units, all defined in terms of the frame. Now, with a group presentation (Π, \bar{g}) associate the lattice presentation $\lambda(\Pi, \bar{g})$ obtained from the 4 -frame Φ by adding the generator symbol g_{i} for each g_{i}, the relations $a_{1} g_{i}=a_{\perp}, a_{1}+g_{i}=a_{1}+a_{2}$, and the relations $w_{i}(\bar{g})=c_{13}$ where $w_{i}(\bar{g})=e$ is a relation of (Π, \bar{g}).

Now, if $w(\bar{g})=e$ is a consequence of (Π, \bar{g}) for (finite) groups, then $w(\bar{g})=c_{13}$ is a consequence of $\lambda(\Pi, \bar{g})$ for (finite) modular lattices L, since $R^{*}(\Phi, L)$ is a (finite) group for any L.

On the other hand, if (G, \bar{h}) is a model of (Π, \bar{g}) such that $w(\bar{h}) \neq$ e (and G finite), then a (finite) model (L, Φ, \bar{h}) with $w(\bar{h}) \neq c_{13}$ is obtained choosing a (finite) vector space ${ }_{F} V$ of $\operatorname{dim}_{F} V=4|G|$; then the lattice L of R-submodules of R^{4}, R the group ring $F[G]$, embeds into the lattice $L\left({ }_{F} V\right)$ of subspaces; moreover, the canonical 4-frame Φ of L together with the $R\left(e_{1}-h_{i} e_{3}\right) \in R^{*}(\Phi)$ provide the required model of $\lambda(\Pi, \bar{g})$ such that $w(\bar{g}) \neq c_{13}$. In particular, the model embeds into the subspace lattice $L\left({ }_{F} V\right)$. Consequently, the relevant class of models consists of sublattices of $L\left({ }_{F} V\right)$ where $\operatorname{dim}_{F} V$ is infinite respectively of $L\left(F_{d} V_{d}\right)$ where $\operatorname{dim}_{F_{d}} V_{d} \rightarrow \infty$.

With a simple modification one can restrict the number of lattice generators to 5: For any n one has $n+3$-frames equivalent within modular lattices to a presentation in 4 -generators [8, Satz 4.1] and with $g=\sum_{j=1}^{n} \pi_{3, j+3}\left(g_{j}\right)$ one obtains $g_{j}=\pi_{j+3,3}\left(g \cdot\left(a_{1}+a_{j+3}\right)\right)$ for $j=1, \ldots, n$ to replace \bar{g} equivalently by g and to proceed with the 4 -frame given by $a_{i}, c_{i j}$ where $i, j \leq 4$.

For reduction to identities, the scheme is modified as described in Subsection 2.4. In order to associate with group generators lattice terms which allow to force group relations within the lattice, several frames are combined via some kind of glueing. This leads to models which are non-Arguesian lattices and, in particular, do not embed into lattices of normal subgroups.

In all examples, discussed, one has a certain set Σ of quasi-identities in the language of groups and for each $\beta \in \Sigma$ an associated quasiidentity $\lambda(\beta)$ in the language of lattices and a class \mathcal{S} of (finite) modular lattices, the class of "models", such that the following hold.

- If β holds for all (finite) groups then $\lambda(\beta)$ holds for all (finite) modular lattices.
- If β fails for some (finite) group then $\lambda(\beta)$ fails for some "model" lattice in \mathcal{S}.
Thus, if Σ is undecidable for the class of (finite) groups, then the set of $\lambda(\beta)$ valid in all (finite) modular lattices and the set of $\lambda(\beta)$ failing in some lattice in \mathcal{S} are recursively inseparable. In other words, the undecidability results extend to all classes of (finite) modular lattices containing the relevant class of models.

Observe that the number of generators in Slobodkoi's Theorem is $3 m+61$ where m is the minimum number of states of a two tape Minsky machine computing some partial recursive function with non-recursive domain.

Problem 8.1. What is the minimal N such that the N-variable equational theory of finite modular lattices is undecidable.

Since skew (n, m)-frames can be generated by 8 elements, the following could be of use.

Problem 8.2. Can one find $n-m$ stable elements in the modular lattice freely generated by a skew (n, m)-frame of characteristic $p \times p$?

References

[1] G. Birkhoff. Lattice Theory, AMS Colloq. Publ. 25, Providence (1979)
[2] M.R. Bridson, H. Wilton, The triviality problem for profinite completions. Invent. Math. 202 (2015), no. 2, 839-874.
[3] A. Day, Splitting algebras and a weak notion of projectivity. Algebra Universalis 5 (1975), no. 2, 153-162.
[4] R. Freese, Projective geometries as projective modular lattices.. Trans. Amer. Math. Soc. 251 (1979), 329-342.
[5] R. Freese, The variety of modular lattices is not generated by its finite members. Trans. Amer. Math. Soc. 255 (1979), 277-300.
[6] R. Freese, Free modular lattices. Trans. Amer. Math. Soc. 261 (1980), no. 1, 81-91.
[7] C. Herrmann, S-verklebte Summen von Verbänden. Math. Z. 130 (1973), 255274
[8] C. Herrmann, Rahmen und erzeugende Quadrupel in modularen Verbänden. Algebra Universalis 14 (1982), no. 3, 357-387.
[9] C. Herrmann, A. P. Huhn, Zum Wortproblem für freie Untermodulverbände. Arch. Math. 26 (1975), no. 5, 449-453.
[10] C. Herrmann, On the word problem for modular lattices with four free generators, Math. Ann. 265 (1983), 513-517
[11] C. Herrmann, Y- Tsukamoto, nd M. Ziegler, On the consistency problem for modular lattices and related structures. Internat. J. Algebra Comput. 26 (2016), no. 8, 1573-1595.
[12] A. Huhn, Schwach distributive Verbnde I. Acta Sci. Math. 33 (1972) 297-305.
[13] G. Hutchinson, Recursively unsolvable word problems of modular lattices and diagram chasing, J. Algebra, 26 (1973), 385-399
[14] G. Hutchinson, G. Czédli, A test for identities satisfied in lattices of submodules. Algebra Universalis 8 (1978), no. 3, 269-309.
[15] O.G. Kharlampovich, The universal theory of the class of finite nilpotent groups is undecidable. (Russian) Mat. Zametki 33 (1983), no. 4, 499-516.
[16] O.G. Kharlampovich, M.V.Sapir, Algorithmic problems in varieties. Internat. J. Algebra Comput. 5 (1995), no. 4-5, 379-602.
[17] O.G. Kharlampovich, A. Myasnikov, M- Sapir, Algorithmically complex residually finite groups. Bull. Math. Sci. 7 (2017), no. 2, 309-352.
[18] L. Kühne, G. Yashfe, Representability of matroids by c-arrangements is undecidable. Israel J. Math. 252 (2022), no. 1, 95-147.
[19] L. Lipshitz, The undecidability of the word problems for projective geometries and modular lattices, Trans. Amer. Math. Soc. 193 (1974), 171-180
[20] A. M. Slobodskoi, Undecidability of the universal theory of finite groups. (Russian) Algebra i Logika 20 (1981), no. 2, 207-230, 251.
[21] J. von Neumann, Continuous Geometry. Princeton Univ. Press, Princeton 1960

9. Figures

Figure 1. Direct product of chains

Figure 2. 2-frame and 3 -frame

Figure 3. Modular lattice generated by a, a^{\prime}, c with $a a^{\prime} \leq c \leq a+a^{\prime}$

Figure 4. Reduction 2-frame $\left(\Phi, a_{i}, c_{12}\right)$ to $\left(\Phi_{d}^{b}, a_{i}^{\prime}, c_{12}^{\prime}\right)$

Figure 5. Reduction of $\Delta(2)$

Figure 6. 2-tower of 3 -frames

Figure 7. Skew (3, 2)-frame ($\Phi^{\prime}, a_{i}^{\prime}, c_{1 j}^{\prime} ; \Phi, a_{i}, c_{12}$)

Figure 8. 2-tower of skew (3, 2)-frames

[^0]: 2000 Mathematics Subject Classification. 06C05, 03D40, 06B25.
 Key words and phrases. Equational theory, finite modular lattices, decidability.

